Identification of Batik Motif Based Deep Learning-Convolutional Neural Network Approach
Abstract
Batik, a rich Indonesian cultural heritage, boasts a diverse array of motifs, each reflecting the unique philosophy of different regions. However, this diversity can make it challenging to distinguish between various batik patterns. This study aims to identify batik motifs using the Convolutional Neural Network (CNN) method. This research dataset comprises 521 digital batik images, encompassing five distinct motifs: Betawi, Cendrawasih, Kawung, Megamendung, and Parang. The data underwent a rigorous processing pipeline, including pre-processing, image segmentation, and feature extraction using Gray Level Co-occurrence Matrix (GLCM). Subsequently, a CNN model was employed for classification. The experimental results yielded an impressive average accuracy of 99.2% in identifying batik motifs. This outcome underscores the efficacy of deep learning, particularly CNNs, in recognizing and categorizing intricate batik patterns. This study may expect to serve a foundational step towards the development of advanced, automated batik recognition systems.
References
[2] Rosyada, M. & Wigiawati, A. (2020). Strategi survival UMKM Batik Tulis Pekalongan di tengah pandemi COVID-19 (studi kasus pada “Batik Pesisir” Pekalongan). Jurnal Bisnis dan Kajian Strategi Manajemen, 4(2).
[3] Setiawan, J., Atika, V., Pujilestari, T., & Haerudin, A. (2018). Kesesuaian Batik Tulis Ikm Berdasarkan Sni 08-0513-1989. Jurnal Standardisasi, 20(1), 69.
[4] Akbar, M.D., Martanto, M. & Wijaya, Y.A. (2022). Klasifikasi Motif Batik Jawa Menggunakan Algoritma K-Nearest Neighbors (Knn). Jurnal Sistem Informasi dan Manajemen, JURSIMA, 10(2), 161-168.
[5] Hakim, L., Kristanto, S.P., Yusuf, D. & Afia, F.N. (2022). Pengenalan Motif Batik Banyuwangi Berdasarkan Fitur Grey Level Co-Occurrence Matrix. Jurnal Teknoinfo, 16(1), 1-7.
[6] Fajar, R.M., Mulyono, H. & Adi, F.P. (2021). Identifikasi Nilai Karakter Motif Batik Ngawi Berbasis Budaya Lokal sebagai Muatan Pendidikan Seni Rupa di Sekolah Dasar. Jurnal basicedu, 5(2), 571-580.
[7] Wijaya, Y.A. (2021). Analisa Klasifikasi menggunakan Algoritma Decision Tree pada Data Log Firewall Jurnal Sistem Informasi dan Manajemen. Jurnal Sistem Informasi dan Manajemen (JURSIMA), 9(3), 256-264.
[8] Hartono, S., Perwitasari, A. & Sujaini, H. (2020). Komparasi Algoritma Nonparametrik untuk Klasifikasi Citra Wajah Berdasarkan Suku di Indonesia. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 6(3), 337-343.
[9] Tasri, Y. (2022). Identification of Signature Images with Edge Detection Canny. Journal Of Ocean, Mechanical And Aerospace -Science And Engineering-, 66(3), 89-93. doi:10.36842/jomase.v66i3.316.
[10] Ryansyah, R. (2021). Identifikasi tingkatan warna pada kopi roasting menggunakan metode HSV berbasis mobile. Jurnal Terapan Informatika Nusantara, 1(10), 520–526.
[11] Maulana, F.F. & Rochmawati, N. (2019). Klasifikasi citra buah menggunakan convolutional neural network. Journal of Informatics and Computer Science (JINACS), 1(02), 104-108.
[12] Juliansyah, S. & Laksito, A.D. (2021). Klasifikasi Citra Buah Pir Menggunakan Convolutional Neural Networks. InComTech: Jurnal Telekomunikasi dan Komputer, 11(1), 65-72.
[13] Diana, R., Warni, H. & Sutabri, T. (2023). penggunaan teknologi machine learning untuk pelayanan monitoring kegiatan belajar mengajar pada smk bina sriwijaya palembang. Jurnal Teknik Informatika (JUTEKIN), 11(1).
[14] Wijanarko, E.W.S. & Adhisa, R.R. (2023). Media pembelajaran object detection perangkat jaringan komputer menggunakan machine learning berbasis desktop. Edumatic: Jurnal Pendidikan Informatika, 7(2), 207-216.
[15] Nugroho, P.A., Fenriana, I., & Arijanto, R. (2020). Implementasi deep learning menggunakan convolutional neural network (CNN) pada ekspresi manusia. Algor, 2(1), 12-20.
[16] Pulung Nurtantio Andono, N.P. & Rachmawanto, H.E. (2020). Evaluasi ekstraksi fitur GLCM dan LBP menggunakan multi-kernel SVM untuk klasifikasi batik. Jurnal Rekayasa Sistem dan Teknologi Informasi, 5(1), 1–9.
[17] Jiang, J., Zhang, Y., Xie, H., Yang, J., Gong, J. & Li, Z. (2024). A deep learning based fine-grained classification algorithm for grading of visual impairment in cataract patients. Optoelectronics Letters, 20(1), 48-57.
[18] Younesi, A., Ansari, M., Fazli, M. A., Ejlali, A., Shafique, M. & Henkel, J. (2024). A comprehensive survey of convolutions in deep learning: Applications, challenges, and future trends. IEEE Access. https://doi.org/10.1109/access.2024.3376441.
[19] Jiamin, J. (2024). The eye of artificial intelligence - Convolutional neural networks. Applied and Computational Engineering. 76,273-279. https://doi.org/10.54254/2755-2721/76/20240613.
[20] Junkun, Y. (2024). Application of CNN in computer vision. Applied and Computational Engineering, 30,104-110. https://doi.org/10.54254/2755-2721/30/20230081.
[21] Xia, Z., Zhang, Y., Han, X., Deveci, M. & Parmar, M. (2024). A review of convolutional neural networks in computer vision. Artificial Intelligence Review, 57, 99. https://doi.org/10.1007/s10462-024-10721-6.
[22] Krichen, M. (2023). Convolutional neural networks: A survey. Computers. 12(8), 151. https://doi.org/10.3390/computers12080151.
[23] Mustapha, M.T., Ozsahin, I. & Ozsahin, D.U. (2024). Convolution neural network and deep learning. In Artificial Intelligence and Image Processing in Medical Imaging (pp. 21-50). https://doi.org/10.1016/b978-0-323-95462-4.00002-9