Detection of Damage Motor and Coal Crusher in Power Plant Tanjung Enim 3 X 10 MW Using Vibration Analysis
Abstract
Motor and coal crushers are critical in coal size reduction for efficient energy production. Continuous operation often impacts their functionality, necessitating effective maintenance methods. This study employs vibration analysis to monitor the health and detect potential faults in the motor and coal crusher. Vibration values, measured under load and no-load conditions, were analyzed in vertical, horizontal, and axial directions using ISO 10816 standards. Results show that while vibration levels remained within safe limits, increased readings in specific areas, particularly at the Crusher NDE in axial direction under load conditions, suggest potential issues like misalignment or bearing wear. Prominent vibration peaks at lower frequencies in the spectrum further support these findings. This research underscores the importance of routine vibration monitoring to preemptively address machine faults, ensuring optimized operation and minimized downtime. Vibration analysis proves effective for predictive maintenance and operational reliability in coal processing systems.
References
[2] Kelly, S.G. (2012). Mechanical Vibrations: Theory and Application, SI, Global Engineering Christoper M. Mechanical Vibrations: Theory and Application, SI, Global Engineering Christoper M. Shortt.
[3] Listewnik, K., Grzeczka, G., K?aczy?ski, M. & Cioch, W. (2015). An on-line diagnostics application for evaluation of machine vibration based on standard ISO 10816-1. Journal of Vibroengineering, 17, 4248-4258.
[4] Pratesh, J. & Mulchandani, K.B. (2008). Machine fault signature analysis. International Journal of Rotating Machinery, 2008.
[5] Scheffer, C. & Girdhar, P. (2004). Practical machinery vibration analysis and predictive maintenance. Elsevier.
[6] Saied, R.O., Mostafa, M.S. & Hussein, H.A. (2015). Predictive maintenance program based on vibration monitoring. Design and Modeling of Mechanical Systems-II: Proceedings of the Sixth Conference on Design and Modeling of Mechanical Systems, CMSM'2015, March 23-25, Hammamet, Tunisia, (pp. 651–660).
[7] Paul, A. & Odu, A. (2024). Predictive Maintenance: Leveraging Machine Learning for Equipment Health Monitoring. https://www.researchgate.net/publication/377411657.
[8] Romanssini, M., de Aguirre, P.C., Compassi-Severo, L. & Girardi, A.G. (2023). A review on vibration monitoring techniques for predictive maintenance of rotating machinery. Engineering, 4, 1797-1817. doi: 10.3390/eng4030102.
[9] Maulana, A.Z., Subekti, S. & Indah, N. (2024). Detecting damage on engine mounts using hilbert-huang transform vibration analysis. JTTM: Jurnal Terapan Teknik Mesin, 5, 235–240. doi: 10.37373/jttm.v5i2.1108.
[10] Jung, J., Lee, S.B., Lim, C., Cho, C.H. & Kim, K. (2016). Electrical monitoring of mechanical looseness for induction motors with sleeve bearings. IEEE Transactions on Energy Conversion, 31, 1377–1386. doi: 10.1109/TEC.2016.2583473.
[11] Haryono, T., Subekti, S., Hamid, A. (2024). Using a frequency vibration approach, examine the impact of screw rotor clearance on the screw housing in an 11kW compressor. JTTM: Jurnal Terapan Teknik Mesin, 5, 1–13. doi: 10.37373/jttm.v5i1.405.
[12] Gerlach, M.E., Zajonc, M. & Ponick, B. (2021). Mechanical stress and deformation in the rotors of a high-speed PMSM and IM-Mechanischer Stress und Verformung in den Rotoren einer Hochdrehzahl-PMSM und einer Hochdrehzahl-IM. Elektrotechnik und Informationstechnik 138 (2021), Nr. 2, 138, 96–109. doi: 10.1007/s00502-021-00866-5.
[13] Dong, Z. (2022). Experimental study on crushing characteristics of lignite under different load conditions. Advances in Materials Science and Engineering, 2022, 5501501. doi: 10.1155/2022/5501501.
[14] Septano, G.D., Ramadhoni, T.S. & Sumarna, H. (2024). Comparative analysis of pressure and flow characteristics in basic and modified air compressor pipeline using computational fluid dynamics in power plant Tanjung Enim 3X10 MW. Media Mesin: Majalah Teknik Mesin, 25, 10–20. doi:/10.23917/mesin.v25i1.2815.
[15] Alsalaet, J. (2015). Dynamic Balancing and Shaft Alignment. https://www.researchgate.net/publication/319164861_Dynamic_Balancing_and_Shaft_Alignment.
[16] Sihombing, S., Naibaho, W., Nababan, W. & Sinaga, A. (2023). Analisa karakteristik getaran pada mesin stone crusher berdasarkan kapasitas pemecah batu koral 50 ton/jam pada daerah horizontal, vertikal dan longitudinal berdasarkan time domain. Sprocket Journal of Mechanical Engineering, 4, 173-180. doi: 10.36655/sprocket.v4i2.895.
[17] Holl, H.J. (2023). Vibration amplitude reduction applying suitable variable excitation frequency. Materials Today: Proceedings, 93, 785–790. doi: 10.1016/j.matpr.2023.07.136.
[18] Asbjörnsson, G., Erdem, I. & Evertsson, M. (2020). Application of the Hilbert transform for diagnostic and control in crushing. Minerals Engineering, 147, 106086. doi: 10.1016/j.mineng.2019.106086.
[19] Mais, J. (2002). Spectrum analysis: The key features of analyzing spectra. SKF USA, Inc.
[20] Junaidi, A.K., Weriono, Nazaruddin & Deden, M.S. (2023). Effect of gear transmission system to vibration test machine. The Journal of Ocean, Mechanical and Aerospace -Science and Engineering- (JOMAse), 67(2), 63-66. doi.org/10.36842/jomase.v67i2.347.