Development of Rotary Fatigue Test Equipment Based on the Joseph Marin Approach

  • Anang Prasetyo Master Student in Mechanical Engineering, Universitas Riau, Indonesia
  • Efi Afrizal Mechanical Engineering Department, Universitas Riau, Indonesia
  • Nazaruddin Nazaruddin Mechanical Engineering Department, Universitas Riau, Indonesia

Abstract

This paper proposed the development of rotary fatigue test equipment. This equipment was used to test the JIS S45C steel, validated using the Joseph Marin approach. Analyzing the fatigue strength of JIS S45C steel using the Joseph Marin approach was compared to experimental testing. The dimension of the test specimens was based on the ASTM E 466. The test data was displayed in the form of an S-N curve. The test results showed the fatigue strength of JIS S45C steel on the whole that was close to each other, experimentally and using the Joseph Marin approach. In the infinite life region, it is known that the fatigue strength based on the Joseph Marin approach was lower than experimental tests. Therefore, if JIS S45C steel had received a hefty load repeatedly, it would fail more quickly.

##Keywords:## Fatigue test equipment, JIS S45C steel, Joseph Marin approach, Specimen
Published
Nov 30, 2023
How to Cite
PRASETYO, Anang; AFRIZAL, Efi; NAZARUDDIN, Nazaruddin. Development of Rotary Fatigue Test Equipment Based on the Joseph Marin Approach. Journal of Ocean, Mechanical and Aerospace -science and engineering-, [S.l.], v. 67, n. 3, p. 95-100, nov. 2023. ISSN 2527-6085. Available at: <https://isomase.org/Journals/index.php/jomase/article/view/344>. Date accessed: 19 aug. 2024. doi: http://dx.doi.org/10.36842/jomase.v67i3.344.

References

[1] Pranata, D. & D.S. Arief (2021). Automatic task machine (atm) design for logistic package by method analytical hierarchy process (ahp) through approach the design for manufacturing (dfm). Journal of Ocean, Mechanical and Aerospace-science and engineering-, 65(1), 1-7.
[2] Yunus, N. & Susilawati, A. (2020). Innovation of elbow fixture welding process based on design for manufacture and assembly (DFMA). Journal of Ocean, Mechanical and Aerospace-science and engineering-, 64(1), 19-24.
[3] Hisyam, K.M. & Hamid, A. (2017). Menganalisa pengaruh besar beban lentur terhadap kekuatan fatik poros tembaga. Zona Mesin, 8(2).
[4] Wijaya, S. (2018). Perencanaan Mesin Uji Lelah Rotating Bending untuk Baja Aisi 1045 (Doctoral dissertation, Unimed).
[5] Syukur, M.A. & Carles, H. (2021). Penentuan parameter parameter input proses pemesinan milling dan gurdi untuk pembuatan pencekam spesimen alat uji lelah dengan kekuatan maksimum 370 mpa. AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin, Universitas Mercu Buana Jakarta, 7(2), 67-73.
[6] Mujahid, A.S. (2019). Mitigation for Hawser‘s short fatigue life on the study of the fatigue life prediction of hawser in single point mooring (spm) at Tuban fuel terminal. Journal of Ocean, Mechanical and Aerospace-science and engineering-, 63(3), 5-12.
[7] Pratowo, B., et al. (2019). Analisis kekuatan fatik baja karbon rendah sc10 dengan tipe rotary bending. Jurnal Teknik Mesin, Program Studi Teknik Mesin, Universitas Bandar Lampung (UBL), 7(1).
[8] Siregar, A. (2000). Pengaruh Struktur Mikro Lapisan Chromized pada Baja 42CrM04 Terhadap Kelakuan Fatik. Fakultas Teknik Universitas Medan Area, Medan.
[9] Hendrawan, B. (2010). Pengaruh Perbandingan Tegangan (Stress Ratio) Terhadap Laju Perambatan Retak Fatik Panel Komposit Berpenguat Kombinasi Serat Kenaf Anyam dan Kontinyu. Skripsi Jurusan Teknik Mesin Fakultas Teknik Universitas Sebelas Maret Surakarta.
[10] Suhartono, H.A. ( 2007). Aplikasi tegangan-regangan ekivalen pada perhitungan umur fatik paduan al 6063 untuk beban aksial dan torsi. Mesin Balai Besar Teknologi Kekuatan Struktur, UPT LUK BPPT, 9(1).
[11] Rahmatullah, R. & Ahmad, R. (2018). Analisa pengujian lelah material bronze dengan menggunakan rotary bending fatigue machine. Jurnal Rekayasa Material, Manufaktur dan Energi, 1(1), 1-11.
[12] Bahtiar, D. (1997). Pengaruh Heat Input pada Pengelasan Saw Baja Kekuatan Tinggi Terhadap Perambatan Retak dan Umur Lelah Daerah HAZ. Doctoral dissertation, Institut Teknologi Sepuluh Nopember.
[13] Fitri, M. (2020). Pengaruh beban lentur pada poros stainless steel terhadap siklus kegagalan fatik. Jurnal Teknik Mesin Universitas Mercu Buana, 9(3), 149.
[14] Dalil, M. & Fatra, W. (2011). Pengaruh air gambut terhadap kekuatan lelah baja struktur. Seminar Nasional Tahunan Teknik Mesin X Tahun 2011 Jurusan Mesin Fakultas Teknik Universitas Brawijaya Malang.
[15] Kennedy, J. (2010). Perancangan Dan Pembuatan Alat Uji Fatik Rotating Pure Bending. Jurusan Teknik Mesin, Fakultas Teknik, Universitas Riau.
[16] Yohanes, Y. & Alqolbi, M.R. (2020). Development of dynamometer based on strain gauge with sensor rod type four square stalk to measuring the drive power of rotary friction welding machine. Journal of Ocean, Mechanical and Aerospace-science and engineering-, 64(1), 9-15.
[17] Arief, D.S., et al. (2018). Modeling of control system on sorting palm fruit machine by using arduino microcontroller. Journal of Ocean, Mechanical and Aerospace-science and engineering-, 52(1), 1-5.
[18] Astika, I.M. (2009). Karakteristik lelah chopped strand mat/polyester composite. Jurnal Ilmiah Teknik Mesin, 9(03), 150.
[19] Budiyanto, E., Nugroho, E. & Zainudin, A. (2018). Uji ketahanan fatik aluminium scrap hasil remelting piston bekas menggunakan alat uji fatik tipe rotary bending. Turbo J. Progr. Stud. Tek. Mesin, 7(1).
[20] ASTM-E8 (2016). Standard test methods for tension testing of metallic materials. Journal of Testing and Evaluation, 45(6), 2294-2298.
[21] ASTM-E466 (2020). Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials.
[22] Shigley, et al. (2006). Mechanical Engineering Design. The ninth edition, Mc Graw-Hill Book Company, New York.
[23] Ghafoori, E., Motavalli, M., Nussbaumer, A., Herwig, A., Prinz, G.S. & Fontana, M. (2015). Determination of minimum CFRP pre-stress levels for fatigue crack prevention in retrofitted metallic beams. Engineering Structures, 84, 29-41.
[24] Sangid, M.D. (2013). The physics of fatigue crack initiation. International journal of fatigue, 57, 58-72.
[25] Alizadeh, R., Marji, M. F., Abdollahipour, A. & Sagand, M. P. (2021). Development of higher-order displacement discontinuity method to simulate fatigue crack growth in brittle materials. Engineering Fracture Mechanics, 258, 108087.
[26] Mughrabi, H. (2015). Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2038), 20140132.