Effect of Rotational Speed on Hardness Value and Area of Vertical Bar-Plate Rotary Friction Weld Joint

  • Yohanes Yohanes Mechanical Engineering Department, Faculty of Engineering, Universitas Riau, Indonesia
  • Meipen Meipen Mechanical Engineering Department, Faculty of Engineering, Universitas Riau, Indonesia

Abstract

This study aims to determine the effect of rotational speed on the weld joint area and the hardness value of vertical bar-plate friction welding on dissimilar materials. Several testing methods were carried out, namely liquid penetrant, macro-observations, micro-observations and hardness test to investigation the welding results. The results of the liquid penetrant test have no effect on the welding specimens. Based on macro-observations was revealed a large enough cavity at a speed of 2.484 rpm with a cavity length of 4.76 mm, then getting smaller at a speed of 2.613 rpm with a cavity length of 2.63 mm. Then, at a speed of 4.335 rpm, no cavities were found. The micro-observation was a change in the microstructure, where in the weld metal area produces fine grains that affect the hardness value. The hardness value increases as it approaches the weld area. The highest hardness value at a speed of 4.335 rpm with a hardness value of 148.10 VHN, while the lowest hardness at a rotational speed of 2.484 rpm has a hardness value of 140.44 VHN.

##Keywords:## friction welding, rotating speed, macro observation, hardness micro observation
Published
Nov 30, 2022
How to Cite
YOHANES, Yohanes; MEIPEN, Meipen. Effect of Rotational Speed on Hardness Value and Area of Vertical Bar-Plate Rotary Friction Weld Joint. Journal of Ocean, Mechanical and Aerospace -science and engineering-, [S.l.], v. 66, n. 3, p. 77-81, nov. 2022. ISSN 2527-6085. Available at: <https://isomase.org/Journals/index.php/jomase/article/view/327>. Date accessed: 19 aug. 2024. doi: http://dx.doi.org/10.36842/jomase.v66i3.327.

References

[1] Kosasih, D.P., Nugraha, H.D. & Susanto, H. (2020). Analisis kekuatan tarik dan cacat porositas pada friction welding logam (FE, AL & FE-AL), Jurnal Mettek: Jurnal Ilmiah Nasional dalam Bidang Ilmu Teknik Mesin, 6(2), 93-102.
[2] Yohanes, Y. & Alqolbi, M. (2020). Development of dynamometer based on strain gauge with sensor rod type four square stalk to measuring the drive power of rotary friction welding machine, Journal of Ocean, Mechanical and Aerospace -Science and Engineering-, 64(1), 9-15. doi:10.36842/jomase.v64i1.147.
[3] Bouarroudj, E., Chikh S, Abdi, S., Miroud, D. (2017). Thermal analysis during a rotational friction welding, Journal of Applied Thermal Engineering, 110, 1543-1553. Doi: 10.1016/j.applthermaleng.2016.09.067.
[4] Dawood, A.B., Butt, S.I., Hussain, G., Siddiqui, M.A., Maqsood, A. & Zhang, F. (2017). Thermal model of rotary friction welding for similar and dissimilar metals. Journal of Metals, 7(6), 224. doi:10.3390/met7060224.
[5] Yohanes, Y. & Heriansyah, M. (2021). Interlayer effect on connection of mild steel st37 and stainless steel 201 on rotary friction welding, Journal of Ocean, Mechanical and Aerospace -Science and Engineering-, 65(1), 23-30. doi:10.36842/jomase.v65i1.233.
[6] Rehman, A.U., Usmani, Y., Al-Samhan, A.M. & Anwar S. (2021). Rotary Friction Welding of Inconel 718 to Inconel 600, Metals, 11(2), 244. doi: 10.3390/met11020244.
[7] Yohanes, Y., Azmi, A. & Abdurrahman, R. (2021). The study of male-female chamfer angle effect on aluminum 6061 forging at rotary friction welding process, Journal of Ocean, Mechanical and Aerospace -Science and Engineering-, 65(2), 61-67. doi:10.36842/jomase.v65i2.234.
[8] Kalpakjian, S. & Schmid, S.R. (2010). Manufacturing Engineering and Technology. Edisi 6, Pearson Prentice Hall. Upper Saddle River-New Jersey.
[9] Haryanto, P., Cahyono, B. & Supandi, S. (2018). Menguji kekuatan tarik pada sambungan las gesek baja karbon rendah (AISI 1040) dan baja tahan karat (AISI 304) disambung menggunakan mesin las gesek, Prosiding Seminar Nasional & Internasional, 1(1).
[10] Haikal, H., Margono, B., Alfayed, A. & Rananto, R.F. (2020). Investigasi sifat fisik dan mekanik sambungan las logam tak sejenis antara baja tahan karat AISI 316 dengan baja paduan AISI 4340 menggunakan rotary friction welding, IENACO (Industrial Engineering National Conference) 8 2020.
[11] Milašinovi´c, V., Radovanovi´c, R., Milašinovi´c, M.D. & Gligorijevi´c, B.R. (2016). Effects of friction-welding parameters on the morphological properties of an Al/Cu bimetallic joint, Material Technology, 50, 89-94.
[12] Liu, Y., Zhao, H., Peng, Y., & Ma, X. (2019). Microstructure characterization and mechanical properties of the continuous-drive axial friction welded aluminum/stainless steel joint, International Journal Advance Manufacture Technology, 104, 4399-4408.
[13] Kimura, M., Inui, Y., Kusaka, M. & Kaizu, K. (2018). Effects of friction welding conditions on tensile strength of friction welded joint between 5052 Al alloy and pure copper, Mechanical Engineering Journal, 5, 17-00398.
[14] Liu, Y., Zhao, H., Peng, Y. & Ma, X. (2020). Microstructure and tensile strength of aluminum/stainless steel joint welded by inertia friction and continuous drive friction, Welding World, 64, 1799-1809.
[15] Mishra, R.S. & Ma, Z.Y. (2005). Friction stir welding and processing, Material Science Engineering: R: Reports, 50(1-2), 1-78.
[16] Winiczenko, R., Skibicki, A. & Skoczylas, P. (2021). Optimization of friction welding parameters to maximize the tensile strength of magnesium alloy with aluminum alloy dissimilar joints using genetic algorithm, Processes, 9(9), 1550. doi: 10.3390/pr9091550.
[17] Ethiraj, N., Sivabalan, T., Sivakumar, B., Vignesh-Amar, S., Vengadeswaran, N. & Vetrivel, K. (2020). Effect of tool rotational speed on the tensile and microstructural properties of friction stir welded different grades of stainless steel joints, International Journal of Engineering, 33(1), 141-147. doi: 10.5829/ije.2020.33.01a.16.
[18] Shubhavardhan, R.N. & Sankunny, S. (2012). Friction welding to join dissimilar metals, International Journal Emerging Technology Advance Engineering, 2, 200-210.
[19] Rajak, D.P., Pagar, D.D., Menezes, P.L. & Eyvazian, A. (2020). Friction-based welding processes: friction welding and friction stir welding, Journal of Adhesion Science and Technology, 34(24), 2613-2637. doi: 10.1080/01694243.2020.1780716.