Effect of Spindle Speed of Bar-Plate Rotary Friction Welding Machine on Joint Interface Area and Hardness Value

  • Michael Simorangkir Mechanical Engineering Department, Faculty of Engineering, Universitas Riau, Indonesia
  • Yohanes Yohanes Mechanical Engineering Department, Faculty of Engineering, Universitas Riau, Indonesia
  • Muftil Badri Mechanical Engineering Department, Faculty of Engineering, Universitas Riau, Indonesia

Abstract

This study aims to determine the effect of the rotational speed parameter on the joint interface weld area and the value of hardness on similar materials. Welding parameters used the rotational speed of 2,484 rpm, 2,613 rpm and 4,335 rpm. Test method used in this research was liquid penetrant, macro and micro-observation and hardness test. The results of the liquid penetrant test showed no defects on the surface of the connection. In macro-observation, where there is a fairly large void at rotational speed of 2,484 rpm, which has length is 2,69 mm, then shrinks at 2,613 rpm to 1,52 mm, then at 4,335 rpm there is no visible void. In micro-observations showed that the weld metal area had a finer grain structure than the HAZ (Heat Affected Zone) and base metal areas this affect hardness value. The results of the hardness test are that the higher the rotational speed the higher the hardness value produced.

##Keywords:## Friction welding, Rotation speed, Macro-observation, Micro-observation, Hardness.
Published
Mar 30, 2023
How to Cite
SIMORANGKIR, Michael; YOHANES, Yohanes; BADRI, Muftil. Effect of Spindle Speed of Bar-Plate Rotary Friction Welding Machine on Joint Interface Area and Hardness Value. Journal of Ocean, Mechanical and Aerospace -science and engineering-, [S.l.], v. 67, n. 1, p. 34-39, mar. 2023. ISSN 2527-6085. Available at: <https://isomase.org/Journals/index.php/jomase/article/view/322>. Date accessed: 19 aug. 2024. doi: http://dx.doi.org/10.36842/jomase.v67i1.322.

References

[1] Kumar, N., Yuan, W. & Mishra, R.S. (2015). Friction Stir Welding of Dissimilar Alloys and Materials. In Friction Stir Welding and Processing, Butterworth-Heinemann, 1-13. doi: 10.1016/B978-0-12-802418-8.00001-1.
[2] Wang, H., Liu, D., Lippold, J.C. & Daehn, G.S. (2020). Laser impact welding for joining similar and dissimilar metal combinations with various target configurations. Journal of Materials Processing Technology, 278. doi: 10.1016/j.jmatprotec.2019.116498.
[3] Nusbir, Y. & Sianipar, A. (2018). Experimental effect of angle variation and speed welding filler using vertical adaptive sliding system in smaw welding. Journal of Ocean, Mechanical and Aerospace -Science and Engineering-, 59(1), 1-5.
[4] Putra, A.D, Purwanto, H, dan Syafa’at, I. (2020). Analisis sifat fisik dan mekanik pada sambungan las gesek dua jenis material alumunium dan tembaga dengan variasi putaran. Momentum, 16(1), 35-40.
[5] Yohanes, Y. & Alqolbi, M. (2020). Development of dynamometer based on strain gauge with sensor rod type four square stalk to measuring the drive power of rotary friction welding machine. Journal of Ocean, Mechanical and Aerospace -Science and Engineering-, 64(1), 9-15. doi:10.36842/jomase.v64i1.147.
[6] Alves, L.M., Silva, C.M.A. & Martins, P.A.F. (2014). End-to-end joining of tubes by plastic instability. Journal of Materials Processing Technology, 214(9), 1954-1961. doi: 10.1016/j.jmatprotec.2014.04.011.
[7] Czerwińska, K., Dwornicka, R. & Pacana, A. (2021). Improving the quality of friction welding by selected methods. Proceedings 30th Anniversary International Conference on Metallurgy and Materials, 360-365. doi: 10.37904/metal.2021.4126.
[8] Yohanes, Y. & Andri, N. (2020). Performance of dynamometer with sensor type single bar for measuring drive power of rotary friction welding machine. Journal of Ocean, Mechanical and Aerospace -Science and Engineering-, 64(3), 73-80. doi:10.36842/jomase.v64i3.146.
[9] Schmidt, H., Hattel, J. & Wert, J. (2004). An analytical model for the heat generation in friction stir welding. Modelling Simulation Material Science Engineering, 12 (1), 143-157.
[10] Anitha, P., Majumder, M.C., Saravanan, V. & Rajakumar, S. (2018). Microstructural characterization and mechanical properties of friction welded in718 and ss410 dissimilar joint. Metallography, Microstructure and Analysis. 7(3).
[11] Prasetyono, S. & Subiyanto, H. (2012). Effect of friction duration, swipe pressure and forging pressure against impact strength direct spindle weld connect on aisi 1045 carbon steel. Jurnal Sains & Seni POMITS, 1(1), 1-5.
[12] Dawood, A., Butt, S., Hussain, G., Siddiqui, M., Maqsood, A. & Zhang, F. (2017). Thermal model of rotary friction welding for similar and dissimilar metals. Metals, 7(6), 224. doi: 10.3390/met7060224.
[13] Xun, l., Li, J., Jin, F., Xiong, J.m& Zhang, F. (2018). Effect of rotation speed on friction behavior of rotary friction welding of AA6061-T6 aluminum alloy. Welding in the World, 62, 1-8. doi: 10.1007/s40194-018-0601-y.
[14] Nu, H.T.M., Loc, N.H. & Minh, L.P. (2021). Influence of the rotary friction welding parameters on the microhardness and joint strength of Ti6Al4V alloys. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 235(5):795-805. doi:10.1177/0954405420972549.
[15] Shinde, G. & Dabeer, P. (2017). Review of experimental investigations in friction welding technique. Proceedings of the International Conference on Science & Engineering for Sustainable Development, 373-384. doi:10.21013/jte.ICSESD201736.
[16] Yohanes, Y. & Meipen, M. (2022). Effect of rotational speed on hardness value and area of vertical bar-plate rotary friction weld joint. Journal of Ocean, Mechanical and Aerospace -Science and Engineering-, 66(3), 77-81. doi:10.36842/jomase.v66i3.327.
[17] Arief, D., Badri, M., Dalil, M., Reforiandi, A. & Permana, A. (2020). Calibration of vickers hardness test pt. tenaris seamless pipe indonesia jaya cilegon using standar blok. Journal of Ocean, Mechanical and Aerospace -Science and Engineering-, 64(3), 81-87. doi:10.36842/jomase.v64i3.203.