The Effect of Variation of Bar Surface Chamfer Angle on Rotary Friction Welding Connections

  • Yohanes Yohanes Mechanical Engineering Department, Faculty of Engineering, Universitas Riau, Indonesia
  • Muftil Badri Mechanical Engineering Department, Faculty of Engineering, Universitas Riau, Indonesia
  • Syafirman Pramija Mechanical Engineering Department, Faculty of Engineering, Universitas Riau, Indonesia

Abstract

This study aims to determine the effect of chamfer angle variations on flash, welding time, interface and hardness values at welded joints of similar materials. The method was used, with parameters of the rotational speed of 4.335 rpm, friction pressure of 0.5 MPa, forging pressure of 0.7 MPa, forging time of 10 seconds and chamfer angle variations of 0°, 15°, 30°, 45°. Then, the specimen result was tested using the projector profile, Non-Destructive Test (NDT), macro-observation, and Vicker test. The result showed that the greater the chamfer angle variation on the given bar surface, the smaller the size of the resulting flash. The smallest flash dimension was produced at a chamfer angle variation of 45°, with an average flash height of 1.03 mm, successfully reducing the flash height by 62% from variations without chamfer angles. Moreover, an average flash width of 0.26 mm reduced the flash width by 77% of the variation without a chamfer angle. Therefore, the greater the variation of the chamfer angle, the smaller the flash size and the more significant the variation of the chamfer angle, the longer the welding time. In the interface area, chamfer angle variations do not affect cracks and voids. The chamfer angle affects the average hardness value, where the more significant the chamfer angle, the more the hardness value is increased.

##Keywords:## Rotary friction welding, Bar-plate, Chamfer angle, Flash.
Published
Nov 30, 2023
How to Cite
YOHANES, Yohanes; BADRI, Muftil; PRAMIJA, Syafirman. The Effect of Variation of Bar Surface Chamfer Angle on Rotary Friction Welding Connections. Journal of Ocean, Mechanical and Aerospace -science and engineering-, [S.l.], v. 67, n. 3, p. 76-82, nov. 2023. ISSN 2527-6085. Available at: <https://isomase.org/Journals/index.php/jomase/article/view/320>. Date accessed: 19 aug. 2024. doi: http://dx.doi.org/10.36842/jomase.v67i3.320.

References

[1] Detra, M.R, Yohanes, dan Abdurrahman, R. (2021). Pengaruh sudut chamfer terhadap timing melt point pada penyambungan material mild steel menggunakan las gesek rotary. JOM FTEKNIK 8(1).
[2] Kumar Rajak, D., Pagar, D.D., Menezes, P.L. & Eyvazian, A. (2020). Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology, 34(24), 2613-2637.
[3] Akinlabi, E.T., Mahamood, R.M., Akinlabi, E.T. & Mahamood, R.M. (2020). Introduction to friction welding, friction stir welding and friction stir processing. Solid-state welding: friction and friction stir welding processes, 1-12.
[4] Simorangkir, M., Yohanes, Y. & Badri, M. (2023). Effect of spindle speed of bar-plate rotary friction welding machine on joint interface area and hardness value. Journal of Ocean, Mechanical and Aerospace -Science and Engineering-, 67(1), 34-39.
[5] Yohanes, Y., Siregar, E., Susilawati, A. & Badri, M. (2018). Performance analysis of flywheel addition on drive system of rotary friction welding machine. Journal of Ocean, Mechanical and Aerospace -Science and Engineering-, 52(1), 14-19.
[6] Yohanes, Y. & Meipen, M. (2022). Effect of rotational speed on hardness value and area of vertical bar-plate rotary friction weld joint. Journal of Ocean, Mechanical and Aerospace -Science and Engineering-, 66(3), 77-81.
[7] Nadya, M, Irawan, Y.S & Choiron, M.A. (2020). Pengaruh double chamfer terhadap flash pada sambungan las gesek al6061 dengan simulasi komputer. Seminar Nasional Teknologi Fakultas Teknik, 2(1), 168-170.
[8] Murali, K., Ajeetha, A., Ganeshkumar, D., Kumar, R.P. & Viswanathan, M. (2021). Investigation of mechanical properties of dissimilar metals by friction welding. International Research Journal of Engineering and Technology (IRJET), 8(4), 2266-2273.
[9] Smith, E.H. & Arnell, R.D. (2014). The prediction of frictional temperature increases in dry, sliding contacts between different materials. Tribology Letters, 55, 315-328.
[10] Gandra, J., Krohn, H., Miranda, R.M., Vilaça, P., Quintino, L. & Santos, J.F. (2014). Friction surfacing—A review. Journal of Materials Processing Technology, 214(5), 1062-1093.
[11] Balta, B., Arici, A.A. & Yilmaz, M. (2016). Optimization of process parameters for friction weld steel tube to forging joints. Materials & Design, 103, 209-222.
[12] Shinde, G. & Dabeer, P. (2017). Review of experimental investigations in friction welding technique. Sustainable Development, 373, 384.
[13] Salih, F I., Dawood, A.S. & Hamid, A.A. (2022). Effects of key processing parameters of continuous drive rotary friction welding on thermal characteristics of similar and dissimilar joints. Al-Rafidain Engineering Journal (AREJ), 27(1), 116-126.
[14] Nu, H.T.M., Loc, N.H. & Minh, L.P. (2021). Influence of the rotary friction welding parameters on the microhardness and joint strength of Ti6Al4V alloys. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 235(5), 795-805.
[15] Utamar, F. & Siswanto (2014). Perancangan dan Pembuatan Mesin Las Gesek Rotary Tegak Bar-plate. Tugas Akhir, Universitas Riau.
[16] Partomuan, P. & Yohanes (2019). Pengaruh variasi bentuk permukaan forging sambungan las gesek rotary terhadap kekuatan tarik baja mild steel. Jom FT EKNIK 3(2).
[17] Meng, X., Huang, Y., Cao, J., Shen, J. & dos Santos, J.F. (2021). Recent progress on control strategies for inherent issues in friction stir welding. Progress in Materials Science, 115, 100706.
[18] Uzkut, M., Ünlü, B.S., Yilmaz, S.S. & Akdağ, M. (2010). Friction welding and its applications in today’s world. In Proceedings of the 2nd International Symposium on Sustainable Development (pp. 8-9). Sarajevo: International Burch University.
[19] Thomas, W.M. (1998). Friction stir welding and related friction process characteristics. In Proc. 7th Int. Conf. on ‘Joints in aluminium–INALCO (Vol. 98, pp. 157-174).
[20] Risonarta, V.Y., Ma’arif, M.S. & As’ad, A.F. (2021). Artificial aging heat treatment post-effect on profile and mechanical properties of the AA 6061 friction welding joint. In IOP Conference Series: Materials Science and Engineering, 1034(1), p. 012134). IOP Publishing.
[21] Hynes, N.R.J. & Velu, P.S. (2018). Effect of rotational speed on Ti-6Al-4V-AA 6061 friction welded joints. Journal of manufacturing processes, 32, 288-297.
[22] Meschut, G., Merklein, M., Brosius, A., Drummer, D., Fratini, L., Füssel, U., ... & Wolf, M. (2022). Review on mechanical joining by plastic deformation. Journal of Advanced Joining Processes, 5, 100113.