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ABSTRACT 
 
The utilization of biomass as a co-firing fuel in coal-fired 
power plants is a strategic element in Indonesia’s energy 
transition. A key challenge lies in accurately assessing the price 
feasibility of biomass fuel (B3m) and ensuring policy 
compliance. This study presents a Python-based Decision 
Support System (DSS) equipped with a graphical user interface 
(GUI) to compute and evaluate the Highest Benchmark Price 
(HPT) of B3m adaptively, including a maximum price 
coefficient (k ≤ 1.2).The system was tested using 12 actual 
proposals from B3m suppliers in Riau Province. Results 
indicate that 58.3% of offers complied with regulatory 
thresholds, with wood-based B3m proving generally more 
competitive than palm-based feedstocks. The system enables 
automated and transparent price feasibility classification. These 
findings highlight the potential of localized Python-based 
computational tools to support economic evaluation of 
renewable energy deployment. 
 
KEYWORDS: Decision support system, Python, Biomass, 
Highest benchmark price (HPT), Co-Firing. 
 
 
NOMENCLATURE 

HPT Highest Benchmark Price 
B3m Biomass 
GUI Graphical User Interface 
CFPP Coal-Fired Power Plant 
k Price Correction Coefficient 
CV Calorific Value (in kcal/kg) 
Fc Correction factor for biomass CV relative to coal CV 
CIF Cost, Insurance, and Freight (coal price benchmark) 

FoB Free on Board 
ESDM Ministry of Energy and Mineral Resources 
RUPTL National Electricity Supply Plan 
 
 
1.0 INTRODUCTION 
 
The global energy transition toward cleaner and more 
sustainable sources is a critical global priority, and Indonesia 
has aligned itself with this commitment through national-level 
policies. One of the government’s strategic efforts to reduce 
dependency on fossil fuels, particularly coal, is the 
implementation of B3m co-firing in coal-fired power plants 
(CFPP), where B3m is introduced as a supplementary fuel [1]. 
In line with this strategy, Indonesia’s state electricity company, 
PLN, has set a target to increase B3m co-firing to 7.7 million 
tons by 2030 [2]. This initiative is underpinned by the country’s 
significant bio-energy potential, which is estimated at 57 GW. 
Specifically, the potential from municipal solid waste accounts 
for approximately 19.32 MW, while agricultural and plantation 
residues contribute an estimated 120.48 MW [3]. 

Despite this ambitious goal, one of the key challenges in 
implementation lies in the absence of a systematic and adaptive 
mechanism to evaluate the feasibility of B3m fuel prices 
proposed by local suppliers. The Indonesian B3m Energy 
Society (MEBI) reported that the disparity between actual 
market prices—especially for exportable B3m types such as 
wood pellets and palm kernel shells—and the benchmark price 
regulated by PLN significantly hampers private sector 
participation in the co-firing program [4]. 

Historically, the evaluation of B3m price feasibility 
referred to the PLN Board of Directors Regulation No. 
001.P/DIR/2020, which set the B3m price coefficient (k) at a 
maximum of 0.85 times the coal CIF price as the basis for 
calculating the Highest Benchmark Price (HPT) [5]. In 
response to market dynamics, this benchmark has been revised 
by the Ministry of Energy and Mineral Resources (ESDM) 
through Ministerial Regulation No. 12 of 2023, allowing for a 
more flexible pricing coefficient up to 1.2 times the Free-on-
Board (FoB) coal price[6]. This policy shift emphasizes the 
importance of adaptive computational tools capable of 
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accommodating changing regulatory parameters. 
Technically, the HPT calculation requires a multi 

dimensional assessment based on coal CIF price, calorific value 
(CV) of B3m, CV of coal, and the regulatory coefficient (k). 
Thus, an intelligent system is needed to simulate and evaluate 
pricing scenarios dynamically. Python has proven to be a 
robust platform for developing data-driven Decision Support 
Systems, particularly within energy engineering domains [7]. 
Previous research has demonstrated its capability in energy 
price forecasting [8], power plant monitoring[9], and 
optimization-based energy simulations[10]. Decision support 
systems (DSS) have proven effective in guiding operational 
decisions in thermal power generation [11]. 

User-friendly tools that employ graphical user interfaces 
(GUI) have also been recognized as effective in improving 
accessibility and accelerating data interpretation in industrial 
settings [12], [13]. Python’s Tkinter framework, in particular, 
has been used to design GUI-based applications for energy 
monitoring, enabling real-time data processing and 
visualization [14]. 

Given these considerations, this study aims to develop a 
Python-based Decision Support System (DSS), herein referred 
to as DSS, integrated with a GUIto calculate and evaluate B3m 
HPT in real time. The system incorporates rule-based logic and 
dynamic parameters according to national regulations, enabling 
users to test the feasibility of B3m price offers adaptively. The 
model is tested using actual B3m price data collected from 
various suppliers in Riau Province, providing empirical 
evidence of the system’s practicality in supporting B3m 
procurement decisions for co-firing in Indonesian CFPP. 
Despite Python's established use in energy systems [7],[8], 9], 
[10]. No prior study has developed a GUI-based DSS for 
Indonesia's dynamic B3m pricing policy with real-world 
validation. 

 
 

2.0 METHODS 
 
2.1 Regulatory Framework and Data Inputs 

This study adopts a regulation-oriented engineering 
approach by aligning the DSS with Indonesia’s latest national 
energy policies. The core algorithm for calculating the HPT of 
biomass fuel is formulated by the Ministry of Energy and 
Mineral Resources Regulation No. 12/2023, which defines 
HPT as the product of the average FoB coal price, a 
government-regulated price coefficient (k), and a calorific 
correction factor (Fc) [6]. 

 
 (1) 

 

   (2) 

 
Where: 

 is average coal price over the last three 
months, including transportation costs. The  is additional 
correction factor, with a maximum value of 1.2.  is correction 
factor for biomass calorific value relative to coal calorific 
value.  is calorific value of biomass (kcal/kg) 

 is average calorific value of coal (kcal/kg) 
The price coefficient (k) in this study is capped at a 

maximum of 1.2, as mandated by Indonesia’s national energy 

policy. This parameter is periodically reviewed and adjusted in 
alignment with prevailing market dynamics and long-term 
strategic objectives. The FoB coal price was calculated based 
on a three-month average market survey conducted in Riau 
Province, ensuring it reflects actual regional economic 
conditions 

The database includes multiple B3m types classified 
according to their industry of origin (e.g., palm oil, sugarcane, 
wood, and others). Table 1 presents the calorific values (in 
kcal/kg) that serve as standard reference inputs for the 
automated calculation process within the system. These values 
are derived from a combination of laboratory test results and 
publicly available data, such as from PLN (2020), documented 
[5],[6], and are used as default estimates unless manually 
adjusted by the user. 

 
Table 1: B3m Types and Calorific Values 

Industry B3m Feedstock 
Calorific 

Value 
(Kcal/Kg) 

Palm Oil 

Oil Palm Mesocarp Fiber (OPMF) 4000 
Palm Kernel Shell 4300 
Empty Fruit Bunch (EFB) 3800 
Oil Palm Frond (Frond) 3350 
Oil Palm Trunk (Replanting) 3500 

Sugarcane 
Bagasse 1850 
Sugarcane Leaf and Top Cane 3000 

Coconut 
Coconut Fiber 3300 
Coconut Shell 4300 

Rubber Rubber Trunk (Replanting) 4200 

Rice 
Rice Husk 3350 
Rice Straw 2800 

Corn 
Corn Cob 3500 
Corn Stalk and Leaf 2500 

Wood 
Wood Pellet 4300 
Wood Chip 2000 
Sawdust 3000 

 
Additionally, actual bid prices from local B3m suppliers in 

Riau were collected and utilized as empirical inputs to validate 
the Python-based DSS for HPT calculation. The incorporation 
of empirical validation with local data enhances the credibility 
and practical applicability of the DSS tool, consistent with 
methodologies in region-specific energy pricing models 
[15].Riau represents Indonesia's largest palm oil and timber 
producing region, making it ideal for testing diverse B3m feed 
stocks [16]. 

 
2.2 Algorithm and Computational Logic 

The core computational engine is constructed using 
Python, employing a rule-based algorithmic structure 
integrating if-else conditionals, looping structures, and user-
defined functions to enable dynamic, scenario-based 
simulations. This design approach is consistent with principles 
in the development of Python-based energy systems [7] and 
modular evaluation tools such as DIETERpy [10]. 

The central function that performs the HPT calculation is 
shown in Listing 1. The algorithm receives four key 
parameters: CIF coal price, calorific value of coal, calorific 
value of B3m, and the coefficient k. These variables are 
dynamically adjustable via the GUI. The following function, 
shown in Listing 1, implements the official HPT formula 
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defined by Ministerial Regulation No. 12/2023, translating it 
into a modular Python function. 
 

Listing 1: Python function for HPT calculation 

def hitung_hpt_biomassa(harga_batubara_cif, cv_biomassa, 

cv_batubara, k): 

    Fc = cv_biomassa / cv_batubara 

    return harga_batubara_cif * k * Fc 
 
This concise yet powerful function follows the structure 

prescribed in regulatory documents and has been tested for 
numerical consistency under multi-scenario simulations. To 
support flexibility, the system enables users to choose between 
manual or default values for both the B3m calorific value and 
the coefficient k, using conditional logic implemented via if–
else statements. This allows the application to adapt 
dynamically to inputs, instrumental in field scenarios where test 
results may vary. To enable dynamic user control, the system 
provides manual input features for both the price coefficient (k) 
and the calorific value (CV), as illustrated in Listings 2 and 3. 
 

Listing 2: Manual input feature for price coefficient (k) 

self.var_k_manual = tk.BooleanVar() 

self.check_k_manual = ttk.Checkbutton(self.input_frame, 

    text="Input Koefisien k Manual", 

    variable=self.var_k_manual, 

    command=self.toggle_k_input 

) 

self.entry_k_manual = ttk.Entry(self.input_frame, 

state="disabled") 
 
Listing 3: Manual input feature for calorific value (CV) 

self.var_cv_manual = tk.BooleanVar() 

self.check_cv_manual = ttk.Checkbutton(frame, text ="Input 

Kalori Manual", variable=self.var_cv_manual, 

command=self.toggle_cv_input) 

self.entry_cv_biomassa = ttk.Entry(frame, state= "disabled") 

 
Listing 4: Input Interface Setup (Tkinter GUI Configuration) 

self.combo_industri = ttk.Combobox(frame_biomassa, 

values=list(data_kalori.keys()), state="readonly") 

self.combo_bahan = ttk.Combobox(frame_biomassa, 

state="readonly") 

self.entry_cv_biomassa = ttk.Entry(frame_biomassa, 

state="disabled") 

self.check_cv_manual = ttk.Checkbutton(..., 

command=self.toggle_cv_input) 
 
 

This structure enables scenario-based simulations in, which 
various B3m types and pricing schemes can be systematically 
compared. Such configurability is critical for decision-making 
in policy-driven contexts, where feasibility thresholds depend 
on regulatory and market-specific conditions. This approach is 
consistent with techno-economic simulation methodologies 
applied in recent B3m co-firing studies [17],[18]. 
 
2.3 System Architecture and GUI Implementation 

To enhance usability, the DSS is developed using Python’s 
Tkinter library, allowing for a lightweight but effective 
Graphical User Interface [19]. The interface facilitates real-time 
data entry, visual feedback, and clear output classification for 
stakeholders. Listing 4 presents the GUI configuration for user 
input, where Tkinter widgets are used to capture biomass 
parameters and trigger manual override functionalities for 
calorific value and price correction coefficients. These widgets 
represent core user controls, enabling flexibility in scenario 
testing. 
 

 
Figure 1: System flowchart of biomass HPT calculation 
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This interface is designed to facilitate interactive data 
inputs, allowing users to select predefined B3m types, 
manually input specific parameters, and observe calculation 
results in real time. Furthermore, this DSS functions as a 
strategic tool with dual utility: it assists B3m-receiving power 
plants in objectively evaluating bid feasibility, while 
simultaneously enabling B3m suppliers to formulate price 
offers by regulatory benchmarks. This dual functionality is 
critical for enhancing transparency and price negotiation 
efficiency throughout the B3m supply chain. The entire system 
architecture is depicted in Figure 1, which outlines the flow 
from data input to decision output. This structure ensures 
traceability and transparency, consistent with standards in 
techno-economic validation of energy software systems [20]. 
 
 
3.0 RESULT AND DISCUSSION 
 
3.1 System Output and Decision Logic Validation 

The developed DSS, designed using Python and the Tkinter 
GUI framework, has demonstrated successful functionality in 
calculating the HPT of B3m across various test scenarios. The 
application interface facilitates user interaction through 
modules for entering coal CIF price, B3m calorific values 

(manual or default), and offering prices submitted by local 
B3m suppliers. The system is equipped with conditional logic 
that allows users to toggle between default regulatory 
parameters and manually tested values, thereby increasing its 
adaptability in real-world use cases. 

Once the input data is provided, the system executes real-
time computations and generates classifications of the price 
feasibility. The results are clearly labeled as "Compliant" or 
"Non-Compliant" concerning the regulatory framework 
outlined in the Ministry of Energy and Mineral Resources 
Regulation No. 12/2023 and PLN’s internal directive [5],[6]. 
The application also includes functions for scenario resetting, 
result export to Excel, and automated archiving for traceability. 

The computation logic has been internally verified for 
consistency across all input configurations, ensuring functional 
alignment with the expected regulatory outcomes. Structure 
and functional elements of the interface are illustrated in Figure 
2, which highlights the modular organization and the 
interactive design of the system. Subsequently, a populated 
interface with real input data from the Riau Province is shown 
in Figure 3, demonstrating the full application workflow and an 
example classification of a B3m offer as compliant under the 
computed HPT threshold. 
 

 
 

 
 

Figure 2: Interface architecture and control elements of the Python-based DSS for evaluating HPT of B3m offers 
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Figure 3: Populated DSS interface using actual B3m offer data from Riau Province 
 
 
3.2 Empirical Validation Using Market Data in Riau 

To validate the system under practical field conditions, 
twelve B3m price offer records were collected from two CFPP 
operating in Riau Province. These records were directly 
sourced from actual B3m tender submissions received by two 
coal-fired power plants in Riau Province, providing a realistic 
basis for testing the Python-based DSS. The variation in coal 
CIF prices—Rp 945/kg for CFPP 1 and Rp 882/kg for 
CFPP 2—reflects localized procurement strategies and market 
dynamics, thereby ensuring representativeness in the validation 
process. 

All coal types used in these CFPP fall into the low-rank 
coal category (LRC), as classified by ISO 11760:2005, which 
segments coal into low, medium, and high rank based on 
vitrinite reflectance and maturity indicators[21]. For 
consistency in the HPT calculation, the calorific values of 
4,162 kcal/kg for CFPP 1 and 4,014 kcal/kg for CFPP 2 were 
determined through laboratory testing of coal samples from 
each power plant, conducted by ASTM D5865-13 standards. 

Of the twelve B3m entries, ten included calorific values 
obtained through laboratory testing, while the remaining two 
relied on default values stored within the system database. The 
calorific value measurements followed the ASTM D5865-13 
standard for gross calorific value and were reported on an “As-
Received Basis (ARB)” to reflect field-operational conditions 
[22]. This hybrid validation strategy enabled the comparison of 
actual test results with default parameters embedded in the 
application. The observed minimal deviation between lab 
results and system values confirms the reliability of the internal 
database. Nevertheless, laboratory testing remains essential for 

precision, as B3m properties are highly sensitive to factors such 
as moisture content, particle size, and contamination. The 
system processed each dataset and classified it as either 
Compliant or Not Compliant, depending on whether the offered 
price was below or above the calculated HPT. These results are 
presented in Table 2. 

To illustrate the classification results, Figure 4 compares 
the offered prices with the system-generated HPT values for 
each feedstock. Each B3m type is represented on the X-axis, 
and the corresponding price in Rp/kg is plotted on the Y-axis. 
Red bars identify offers that exceed the HPT, while others fall 
within acceptable thresholds. This empirical validation 
demonstrates that the Python-based DSS successfully 
distinguishes between offers that comply with government 
price ceilings and those that do not, based on adaptive 
regulatory logic. Additionally, a regional pricing trend becomes 
evident: B3m sourced from the palm oil industry—such as 
empty fruit bunches and palm kernel shells—typically shows 
higher prices due to preprocessing, drying requirements, and 
limited local availability. In contrast, wood-based B3m—
particularly sawdust—tends to be more affordable and 
abundant in Riau due to widespread furniture and plywood 
industries [23]. 

These findings are consistent with broader research on the 
B3m value chain, which identifies moisture variability and 
fragmented logistics as primary cost drivers for palm-based 
B3m [24]. Hence, the system not only operates as a compliance 
filter but also surfaces economic feasibility patterns critical for 
localized policy interventions. 
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Table 2: System output summary based on market offers from Riau CFPP 

CIF Coal 
Price 

Coal Calorific 
Value 

Biomass 
CFPP 

Biomass Calorific 
Value 

Feedstock Type 
Offered  

Price 
HPT Feasibility 

(Rp/Kg) (Kcal/Kg)  (Kcal/Kg)  (Rp/Kg) (Rp/Kg)  

945 4,162 

CFPP 1 

4,449 Empty Fruit Bunch (EFB) 5,000 1,212.20 Not Feasible 
945 4,162 4,264 Palm Kernel Shell 1 1,900 1,161.79 Not Feasible 
945 4,162 4,300 Palm Kernel Shell 2 1,850 1,171.60 Not Feasible 
945 4,162 4,447 Oil Palm Mesocarp Fiber (OPMF) 678 1,211.65 Feasible 
945 4,162 3,300 Sawdust 1 790 899.14 Feasible 
945 4,162 2,332 Sawdust 2 400 635.39 Feasible 
945 4,162 2,968 Sawdust (Rubber Wood) 680 808.68 Feasible 
945 4,162 2,683 Sawdust (Acacia Wood) 650 731.02 Feasible 
945 4,162 1,598 Sawdust (Brown Fiber) 300 435.40 Feasible 
945 4,162 2,000 Wood Chip 1,300 544.93 Not Feasible 
882 4,014 

CFPP 2 
4,190 Palm Kernel Shell 3 2,000 1,104.81 Not Feasible 

882 4,014 3,000 Sawdust 3 570 791.03 Feasible 

 
 
 
 

 
 

Figure 4: Comparison of biomass offered prices and HPT in Riau 
 
 
3.3 Regional Insights and Policy-Relevant Interpretation 

The regional assessment of B3m feedstock availability in 
Riau Province reveals a high degree of technical and economic 
feasibility for sourcing wood-based residues, particularly 
sawdust, for co-firing applications. Field visits conducted by 
the authors across Kampar Regency and Pekanbaru City, 
specifically to artisanal sawmill clusters in Salo and Teratak 
Buluh, as well as licensed facilities such as PT Rubber Wood 
Industries and PT Ewan Super Wood, confirmed that sawdust 
is abundantly available, with daily volumes ranging from 1 to 
12 tons per site depending on industrial scale and processing 
capacity. 

At the artisanal level, approximately 50 small-scale 

sawmills were identified, with each producing 2 to 6 tons of 
sawdust per day. In contrast, large-scale operations such as PT 
Rubber Wood Industries and PT Ewan Super Wood yielded 
between 8 and 12 tons per day. Despite this substantial supply, 
many artisanal producers offer sawdust at zero cost, requiring 
buyers to cover only transport expenses, which average around 
Rp 300/kg. This affordability is partly due to weak demand 
competition, as sawdust is only marginally utilized by the local 
wood-panel and fertilizer industries in the Pekanbaru region. 

Logistical feasibility is further supported by existing 
transport infrastructure. Most collection sites are accessible by 
dump trucks or medium-duty vehicles (e.g., Colt Diesel), with 
distances to the nearest coal-fired power plants (CFPP) ranging 
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from 22 to 85 kilometers. These logistics profiles suggest that 
locally sourced B3m is not only cost-effective but also 
practically transportable often over looked criterion in macro-
level policy modeling. 

A dual compliance landscape was also observed. While 
registered mills operate under formal legal standards, many 
artisanal saw-mills function informally and without licensing. 
This raises critical issues related to procurement traceability 
and regulatory audit-ability. In response, future iterations of the 
DSS could incorporate binary legality flags or automated 
permit-checking modules to help power plant operators 
distinguish eligible from ineligible suppliers 

These field-based insights are consistent with prior findings 
by Ninomiya et al. [16], who identified Riau Province as 
possessing surplus sawdust volumes that exceed co-firing 
demand projections across the ASEAN region. That study also 
noted structural inefficiencies—including fragmented supplier 
networks and a dominance of informal actors—which were 
corroborated by this research’s ground observations. 

Economically, our findings reinforce those of Reeb et al 
.[25] and Handaya et al. [26], who reported that palm-based 
B3m (e.g., empty fruit bunches, palm kernel shells) tends to 
carry higher processing and logistics costs than wood-based 
alternatives. The latter offers more stable supply chains and 
favorable price-performance ratios, making them better suited 
for decentralized co-firing operations. Triani et al .[27]also 
highlight the importance of digital tools such as DSS in 
evaluating procurement feasibility—an objective achieved in 
this study through adaptive HPT computation and regulatory 
compliance screening. 

To facilitate national roll-out, the DSS can be interfaced 
with PLN’s Integrated Fuel Procurement Dashboard (E-Proc 
PLN) via a lightweight REST API. Bid data entered through 
the GUI can be automatically pushed to PLN’s centralized 
platform, enabling near-real-time screening of biomass offers 
and seamless integration into the utility’s contract-management 
workflow. This architecture would enable PLN and the 
Ministry of Energy and Mineral Resources to access 
consolidated analytics for B3m feasibility across regions, 
thereby linking real-time field inputs with centralized policy 
oversight and enforcement. By integrating market offers, 
calorific values, transport estimates, and regulatory constraints, 
the DSS functions not only as a technical screening tool but 
also as a policy-aligned decision-making instrument capable of 
accelerating co-firing adoption under Indonesia’s Presidential 
Regulation No. 112/2022 [28]. 
 
 
4.0 CONCLUSION 
 
This study designed, implemented, and empirically validated a 
Python-based Decision Support System (DSS)—equipped with 
a Tkinter graphical interface—to evaluate the price feasibility 
of biomass fuel (B3m) for co-firing in Indonesian coal-fired 
power plants. Using twelve market offers from Riau Province 
and incorporating key regulatory inputs (biomass calorific 
value, three-month average coal CIF price, and the mandated 
price coefficient k ≤ 1.2), the system automatically computes 
the Highest Benchmark Price (HPT) and classifies each bid as 
feasible or non-feasible. Field surveys in Kampar and 
Pekanbaru confirm that sawdust is both abundant and cost-
competitive, reinforcing the DSS finding that wood-based 

residues outperform palm-based feed stocks on a delivered-cost 
basis. By operation on the formulae in Ministerial 
Regulation No.12/2023and PLN Director 
Regulation No.001.P/DIR/2020,and aligning them with the 
renewable energy acceleration targets of Presidential 
Regulation No.112/2022, the DSS bridges technical analytics 
with national policy mandates. Its intuitive GUI lowers the 
entry barrier for provincial power plant operators and local 
biomass suppliers, thereby enhancing transparency and 
negotiation efficiency. To scale impact beyond this pilot 
deployment, the DSS can be integrated with PLN’s Integrated 
Fuel Procurement Dashboard (E-Proc PLN) or the forthcoming 
ESDM Renewable Energy Monitoring Portal via a lightweight 
REST API. Such coupling would institutionalise standardised, 
policy-compliant procurement across Indonesia’s CFPP fleet 
and provide regulators with a consolidated, real-time view of 
regional biomass markets. Several limitations remain. The 
prototype relies on static transport cost assumptions, lacks 
automated verification of supplier legality, and is not yet linked 
to PLN’s central data warehouse. Future work will embed 
dynamic logistics routing, binary legality flags, predictive 
analytics, and a threshold-line visualisation in the GUI, while 
porting the architecture to a cloud-based micro-service capable 
of interfacing directly with PLN and ministry dashboards. 
Overall, the proposed DSS constitutes a replicable, policy-
aligned, and technologically streamlined solution that can 
accelerate Indonesia’s transition toward sustainable power 
generation by ensuring that biomass co-firing procurement is 
both economically sound and regulatory compliant. 
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