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ABSTRACT 
 
In this paper a simple implementation of 1D TVD scheme to 
2D triangular grid was proposed and sufficient condition for 
oscillation free solution of advection equation were found using 
monotone advective K-approximation. The approach was 
implemented to Superbee and Smart limiter and compared to 
Barth and Jespersen (BJ) scheme by using the schemes to well 
known classic case of advection of step and double step of 
scalar properties. Result indicated that all of the computed 
solutions are monotone and, apart from highly diffusive first 
order solution, they show similar level accuracy for test cases. 
Superbee limiter gives the best performance and follow by 
Smart limiter and BJ scheme. 
 
 
KEYWORDS: Monotone, Limiter, Triangular grid, Finite 
volume. 
 
 
1.0 INTRODUCTION 
 
Discretisation of advection dominated flow has proven to be 
one of the most difficult parts of the numerical fluids 
mechanics. The objective of discretisation is to devise a 
practice that will produce an accurate and non-spurious 
oscillation (monotone) solution. The significance of monotone 
solution become clear if we consider transport of scalar 
properties such as phase fraction, turbulent kinetic energy and 
dissipation and species mass fraction etc. A negative value of 
turbulent dissipation, for example, which case by non-
monotone solution scheme during iteration process, will 
produce disastrous effect on solution algorithm.  

Many robust high resolutions [1-3] have been developed 
for simulation of the advection-dominated flow in last decades. 
Most of the scheme implemented on structured mesh in finite 
volume. The scheme works by imposing monotone criterion on 

flux equation for the faces of cell or imposing monotone 
criterion on slope of variable in cell centre. The earlier scheme 
was based on the deliberate additional of artificial viscosity 
locally in area of steep property gradients, as in Jameson [4]. 
The latest approach was based on flux limiting where the 
interpolated flux at control volume faces are obtained as sum of 
first order accurate flux plus a fraction of correction needed to 
make flux second order accurate. This partial correction is 
chosen to be as large as possible whilst not producing solution 
oscillating. The criterion established by Harten [5], for 
avoidance of oscillations was that the Total Variation of 
convected properties should diminish at each time step. Such 
methods are therefore known as Total Variation Diminishing or 
TVD method. The general theory of TVD was developed from 
early 1970 by many worker including Van Leer [6], Boris and 
Book [7]. This criterion was then expressed as a flux limiter by 
Sweeby [8]. By late 1980 the methods was firmly establish for 
structured mesh gas dynamics and aerodynamics codes. 

For unstructured grid the situation are not as easy as for 
structured one [9,10]. In arbitrary unstructured meshes, the 
concepts of far upwind cell which need by applying TVD 
scheme become quite complicated. It is not clear how to 
determine the far upwind cell since the mesh does not have any 
clear directionality [10]. To circumvent this difficulty a number 
of approaches have been involved with varying degrees of 
success. One of famous scheme was proposed by Barth and 
Jespersen (BJ) [11]. BJ used linear reconstruction to calculated 
face value, a limiter then applied to impose monotonicity. BJ 
limiter then improved by Venkatakrishnan [12].  

The commercial CFD code Fluent v.6.0 was not only 
adapted this approach. However the choice of limiter function 
in BJ is restricted and the used of single limiter for all 
downstream face are overly restrictive particularly for cells 
with three faces or more [10]. Using non differentiable function 
in BJ limiters also cause the stall of convergence to steady state 
[25]. The uses of limited face value of variables to calculate 
cell centre derivatives and the action of attenuate the gradient in 
all direction equally are also open to question. A modification 
of BJ limiter was proposed by Aftosmis [13] who suggested a 
directional implementation of gradient. An another alternative 
method to BJ scheme for unstructured triangular mesh based on 
1D limiter is proposed and test in this in work. The ability in 
term of accuracy of the methods was tested in standard step and 
double step advective flow. 
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2.0 TVD SCHEME FOR STRUCTURED MESH 
 
As is now well known, with high order of accuracy, linear 
scheme will generate spurious oscillation. The source of 
oscillation can be seen from several points of view. Threfeten 
[14] reported that the source of oscillation is odd derivative in 
estimation error which causes difference of wave velocity to 
group velocity. Leonard [15] reported that the oscillation 
caused by unstable sensitivity of convective influx of numerical 
modeling.  

Apart from different ideas on the source of oscillations, 
TVD Scheme was developed, as a tool to prevent oscillation, 
by Harten [5] without considering the real source of oscillation 
in his report. The main idea of TVD is the numerical solution 
will be oscillation free if Total Variation of field variable such 
as velocity does not increase during iteration.  Roe [16] applied 
the TVD scheme in finite volume methods by write the face 
value of cell centre variable,  , as sum of a diffusive first order 
upwind term and a limiter multiplied anti diffusive term.  In the 
case of numerical solution of Navier-Stokes equation, is face 
value of velocity come from volume integration of convective 
term. Whilst, the limiter function   is a nonlinear function of 
variable r which measure of local smoothness. The local 
smoothness r was introduced by Van Leer [6] for 1D cases: 
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1i  is downwind cell variable on face f,  i and 1i  are 

upwind and far upwind cell variable. Only an hexahedral 
unstructured meshes is it possible to recognize the distinct 
direction needed to implement the TVD scheme in 2D and 3D. 
 

 
Figure 1: Some possibility of far upwind cell centre of 

unstructured mesh 
 
 

Equations of the limiter   r  have been derived by several 

authors. Two commonly used of the limiter are: 
Superbee [17] , given by 
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SMART [18], given by 
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3.0 TVD SCHEME FOR UNSTRUCTURED MESH 
 
In arbitrary unstructured meshes, the mesh does not have any 
clear directionality (Figure 1), finding far upwind cell become 
complicated. Any of even can be considered as far upwind of 
face f but no reason to choose one of them. So that TVD 
scheme of equation (1) and (2) is only applicable to limited 
case 1D or structured 2D and 3D meshes. 

The powerful monotone interpolation describe in the 
previous section rely on the availability of the conservative grid 
data points equi-spaced along a line normal to the cell face; 
downstream, upstream and far upstream point. The face centre 
should also be collinear with and equidistance from its two 
neighbouring cell centres. These conditions are satisfied for 
structured meshes of uniform rectangular cells, but nature is 
definitely not satisfied for unstructured meshes. It would appear 
therefore that alternative approach is for unstructured meshes. 
One of popularly used unstructured mesh limiter is that of Bart 
and Jespersen. 

In their seminal paper on unstructured mesh scheme, Barth 
and Jespersen (BJ) [11] not only developed a new descritisation 
method, but also incorporated a TVD limiter into the method. 
The basic used reconstruction method so that the value of 
convected scalar   at face f of cell was obtain from the cell 

centre value P  and cell centre gradient P using: 

 

PfPPf r

     (5) 

 
In order to limit the face value to satisfy the TVD condition, BJ 
applied a limiter factor   to gradient P , giving: 

 
PfPPyx r

 ),(     (6) 

 
Which allow a value of   to be found from linear 
reconstruction at any point within or on boundary cell P as 
 yx, . To satisfy the TVD constrain the required: 

 

MaxyxMin  ),(     (7) 
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Where:  
 

 neighbourPMin Min  ,  neighbourPMax Max  ,  (8) 

 
and neighbour  denote the cell centre value at all immediate 

face neighbour cells to cell P. In practice BJ do not test all 
point within the cell using Equation (6), but instead used only 
the cell vertices. Thus BJ limiter is calculate as follow: 
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and 


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where V  is value of   at vertex of cell. 

 
This method reduces the gradient in second term of Equation 6 
to the lowest value of it in entire cell due to use of the Min 
function of Equation 10. It causes the face value of field 
variable f no longer second order estimated and the limiting 

process relatively dissipative.   
 
 

04.  IMPLEMENTATION 1D LIMITER FOR  
       UNSTRUCTURED TRIANGULAR MESH 
 
It was observed that the standard 1D flux limiter could not be 
applied directly for unstructured meshes because of their 
requirement for 3 collinear data points. This problem was 
overcome by using spatially corrected cell centre D’ and C’ on 
the downstream and upstream side of face considered 
respectively plus a third fictitious point U’upstream of C’, such 

that '''' DCUC rr


  and CD 5.0Cf  as shown in Figure 2. 

Since numerically calculated value   is available at the point 

C’ can be found using Least Square methods,   at fictitious 
point U’ may be found with second order accuracy from: 
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Where: 
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Figure 2: Spatially corrected cell centres and fictitious cell 

 
 

It is vital to the accuracy of the method that 'U is 

calculated in this way, and not an offset from 'C . Once 'U is 

known then the standard one dimensional TVD methods may 
be used to determine smoothness monitor of r and hence the 
TVD limited face variable for face f as in Equation (2). 
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The similar idea was proposed separately by Tasri [19], 

Darwish [20] and Bruner [21]. The authors used point C, D, 
and did not use the spatially corrected of cell position, C’, D’, 
as used in Figure 2. It was founded that the avoidance causes a 
significant error particularly in distorted grid as reported by 
Tasri [10]. 

The method is considerably less restrictive and less 
dissipative than those of BJ. Firstly, the limiting action is 
applied face by face through limiting the gradient a long the 
surface vector of each face considered, rather than having 
common limiter for all  downstream faces of cell as it in 
Equation 10. This is particularly beneficial where quadrilateral 
cell are used. Secondly, user has complete freedom choice from 
the wide range of well tested structured mesh limiter scheme 
available. 

 
 

05. MONOTONE REQUIREMENT 
 
Applying 1D limiter to unstructured grid face by face, as 
explain in last section, is not always satisfy TVD condition due 
to a possibility of undershoot to be created inside cell 
considered. Because of very limited number of tools available 
to test the monotone condition, only unstructured triangular 
mesh is considered in this work. Refer to the work of Lin [22] 
and Wilder [23], they suggested that the sufficient condition of 

advective-diffusive equation of field variable   
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for an monotone advective K-approximation is: 
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4321  , ,  ,   are refers to Figure 3 while L  is left value 

of    on face f. In this case, follow the idea of Equation 2, L  

is calculated by interpolating from cell 1, 
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L                  (18)  

 
By assuming that   is distributed linearly between cell 1 

and 2 the equation (18) can be written in form of reconstruction 
gradient: 
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Figure 3: Triangular Mesh used to check advective K- 

approximation 
 

 

1  is the computed using Green-Gauss reconstruction on 

triangle 431 PPP .  
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where abt


and cdn


 are vector from point a to b and normal 

vector pointing to the right on the segment between c and d 

respectively, 134A  is area of triangle 431 PPP . 

 
Using Equation 18, 19 and 20, a sufficient condition for 

 r  to imply Equation 16 and Equation 17 are: 
 

0rfor            0)(  r                                                         (21) 

0rfor     2)(0  r                                                         (22) 
 

In case of 0r , the requirement in Equation 16 and 
Equation 17 are satisfied by Equation 18 and 19.  For 0r , 
Equation 16 and Equation 17 are satisfied by Equation 19 and 
20. 

Equation 21 and 22 show that the range of monotone 
advective K-approximation relaxes the range of   in 1D and 
second order cases as suggested by Swebee [8]: 
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So that all 1D second order limiter can be implemented as 

2D limiter using fictitious point as it in Figure 2.  
 

 
06. TEST PROBLEM 
 
In order to test the TVD properties of the flux limiting scheme 
for unstructured mesh considered here, the scheme is used to 
the popular classic test case of advection of step and double 
step properties in scalar   was studied. 

The main objective of this test is to investigate the ability 
of TVD scheme to foil the wiggle and to investigate the 
accuracy of using 1D TVD scheme to unstructured mesh. The 
2D advection equation solved was: 

 
  0 c


                   (24) 

 

Where,   is the convected scalar and jic


  is 
Cartesian velocity vector. The solution domain was a square, of 
side length 1.0 as shown in Figure 4 where the bottom and the 
left boundaries were velocity inlets and the top and right hand 
boundaries were outflow boundaries. The domain was meshed 
with triangular cell as shown. 

 

 
Figure 4: Domain of step profile test case 

 



 

Journal of Ocean, Mechanical and Aerospace 
-Science and Engineering- 

30th November, 2024. Vol.68 No.3 
November 30, 2024 

 

173 JOMAse | Received: 09-November-2024 | Accepted: 30-November-2024 | [(68) 3: 169-174] 
Published by International Society of Ocean, Mechanical and Aerospace Scientists and Engineers, www.isomase.org., ISSN: 2354-7065 &  e-ISSN: 2527-6085

 

Two different inlet boundary conditions were tested. In 
first, a step profile in   was used with 1 on the vertical 

inlet and 0 on the horizontal inlet boundary. The second 

case was used a double step distribution, with 0 on 

horizontal inlet and   on the vertical inlet define by: 
 









0.2y      for         0

2y0   for          1
                                                      (25) 

 
The problem were solved using first order upwind 

differencing for  , using second order limited scheme of BJ 
and using interpolative accurate scheme in conjunction with 
Superbee and Smart limiter. Apart from over compressive 
properties of Superbee in smoothly varying of flow, both are 
known as the most accurate 1D limiter.  

 

 
Figure 5: Advection of step profile in scalar   

 
 

 
Figure 6: Advection of double step profile in scalar   

 

The computed distribution of   a long the horizontal 
centre line of the domain is shown in Figure 5 and Figure 6 for 
the step and double step distribution respectively. The full 
black line on this plot shows the exact solution for comparison. 
All of the computed solutions are oscillated free. It proves that 
the 1D limiter can foil oscillation in unstructured triangular and 
2D mesh.  Apart from highly diffusive first order solution, the 
results show similar level accuracy in step profile test cases. 
Comparing Superbee and Smart limiter to BJ limiter in this 
case, it can be conclude that using less dissipative face by 
limiting action in Smart and Superbee do not give significant 
improve of accuracy. 

In double step test case, Superbee and Smart are slightly 
better than BJ limiter. As expected the Superbee limiter, due to 
apply the minimum limiting and maximum steepening possible 
to remain TVD [17] give the best performance with Smart 
limiter. The result also demonstrated that Superbee method is 
slightly over compressive, as it in sinusoidal distribution of 

field variable   where Superbee tends to sharpen toward step 

form.  
 
 
07. CONCLUSION 
 
1D TVD Superbee and Smart limiter were implemented on 
unstructured triangular mesh. Both gave the monotone result. 
Comparing accuracy of the limiters to Barth and Jespersen was 
showed the Superbee that was the best follow by Smart and 
Barth and Jespersen scheme. Therefore, the method can be an 
alternative method to Bart and Jespersen scheme. Using the 
methods proposed in this paper a wide range of 1D TVD 
scheme can be readily implemented.  
 
 
REFERENCES 
 
[1] Leonard, B.P. (1980). The quick algorithm: A uniformly 

third-order finite volume method for highly convective 
flow. In K. Morgan et al. (Eds.), Computer Methods in 
Fluid. Penthech Press. 

[2] Jawahar, P. & Kamath, H. (2000). A high-resolution 
procedure for Euler and Navier-Stokes computations on 
unstructured grids. Journal of Computational Physics, 
164(1), 165–203. 

[3] Jameson, A. (1994). Analysis and design of numerical 
schemes for gas dynamics: I. Artificial diffusion, upwind 
biasing, limiters, and their effect on accuracy and 
multigrid convergence. International Journal of 
Computational Fluid Dynamics, 3(2), 172–218. 

[4] Jameson, A. & Mavripilis, D. (1985). Finite volume 
solution of the two-dimensional Euler equations on a 
regular triangular mesh. AIAA Paper 85-0435. 

[5] Harten, A. (1983). High resolution schemes for 
hyperbolic conservation laws. Journal of Computational 
Physics, 49(3), 357–393. 

[6] Van Leer, B. (1974). Towards the ultimate conservation 
difference scheme. II. Monotonicity and conservation 
combined in a second-order scheme. Journal of 
Computational Physics, 14(4), 361–370. 



 

Journal of Ocean, Mechanical and Aerospace 
-Science and Engineering- 

30th November, 2024. Vol.68 No.3 
November 30, 2024 

 

174 JOMAse | Received: 09-November-2024 | Accepted: 30-November-2024 | [(68) 3: 169-174] 
Published by International Society of Ocean, Mechanical and Aerospace Scientists and Engineers, www.isomase.org., ISSN: 2354-7065 &  e-ISSN: 2527-6085

 

[7] Boris, J.P. & Book, D.L. (1973). Flux-corrected 
transport. I. SHASTA, a fluid transport algorithm that 
works. Journal of Computational Physics, 11(1), 38–69. 

[8] Sweby, P.K. (1984). High-resolution schemes using flux 
limiters for hyperbolic conservation laws. SIAM Journal 
on Numerical Analysis, 21(5), 995–1011. 

[9] Berzins, M. & Ware, J.M. (1995). Positive cell-centered 
finite volume discretization methods for hyperbolic 
equations on irregular meshes. Applied Numerical 
Mathematics, 16(5–6), 417–438. 

[10] Tasri, A. (2005). Accuracy of nominally second-order 
unstructured grid CFD codes (PhD thesis). University of 
Newcastle, UK. 

[11] Barth, T.J. & Jespersen, D.C. (1989). The design and 
application of upwind schemes on unstructured meshes. 
AIAA Paper 89-0366. 

[12] Venkatakrishnan, V. (1993). On the accuracy of limiters 
and convergence to steady-state solutions. AIAA Paper 
93-0880. 

[13] Aftosmis, M & Tavares, T.S. (1994). The behavior of 
linear reconstruction on unstructured meshes. Wright 
Laboratory Report. 

[14] Trefethen, L.N. (1982). Group velocity in finite 
difference schemes. SIAM Review, 24(2), 113–136. 

[15] Leonard, B.P. (1979). A stable and accurate convective 
modeling procedure based on quadratic upstream 
interpolation. Computer Methods in Applied Mechanics 
and Engineering, 19(1), 59–98. 

[16] Roe, P.L. (1981). The use of the Riemann problem in 
finite difference schemes. In Lecture Notes in Physics 
(Vol. 141, pp. 354–359). 

[17] Roe, P L. (1985). Some contributions to the modeling of 
discontinuous flow. In Lectures in Applied Mathematics 
(Vol. 22, pp. 163–193). 

[18] Gaskell, P.H. & Lau, A.K.C. (1988). Curvature-
compensated convective transport: SMART, a new 
boundedness-preserving transport algorithm. 
International Journal for Numerical Methods in Fluids, 
8(6), 617–641. 

[19] Tasri, A. (2002). TVD method for unstructured grid 
(Internal report). University of Newcastle, UK. 

[20] Darwish, M.S. & Moukalled, F. (2003). TVD schemes 
for unstructured grids. International Journal of Heat and 
Mass Transfer, 46(4), 599–611. 

[21] Bruner, C. & Walter, R. (1995). Parallelization of the 
Euler equations on unstructured grids. AIAA Paper 97-
894. 

[22] Lin, S.Y. & Yu, T.M. (1993). Upwind finite volume 
methods with triangular meshes for conservation laws. 
Journal of Computational Physics, 107(2), 324–337. 

[23] Wilder, P. & Fotia, G. (2002). A positive spatial 
advection scheme on unstructured meshes for tracer 
transport. Journal of Computational and Applied 
Mathematics, 140(1–2), 809–821. 

[24] Van Leer, B. (1979). Towards the ultimate conservation 
difference scheme. V. A second-order sequel to 
Godunov’s method. Journal of Computational Physics, 
32(1), 101–118. 

[25] Cho, H.K., Lee, H.D., Park, I.K. & Jeong, J.J. (2010). 
Implementation of second-order upwind methods in a 
semi-implicit two-phase flow code on unstructured 
meshes. Annals of Nuclear Energy, 37(5), 606–614. 

 
 
 


