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ABSTRACT 

 

Historically speaking, all high frequency earth-quakes do not 

produce tsunami which is evident from several earthquakes that 

took place in Indian Ocean between 2004 and 2006. The works 

of Geist et.al [’06] and Ammon et.al [’05] are good examples 

of such study through which they have pointed out the 

miserable failures of the existing warning system. The reasons 

of no-generation of tsunami due to large quakes may be several 

but in this article we have tried to throw some light on this 

puzzle and tried to analyze energy transmission to a tsunami 

motion at steady state and have shown that no energy transmits 

for certain frequencies of the forcing parameter. We discuss 

here tsunami waves which are generated by instantaneous 

bottom dislocation where the ocean floor is taken to be of 

variable slope and analytical solutions are provided correct to 

all time t. 

 

 

KEY WORDS: Tsunami Waves; Shallow Water Equations; 

Hankel Transform; Hankel Functions; Asymptotic Expansion. 

 

 

NOMENCLATURE 

η Wave elevation/surface displacement 

ηst , ust surface displacement and velocity at steady state 

(Jν, Yν) Bessel function of first and second kind of order ν 

H(t) Heaviside unit function 
( ) )(zH
2

ν Hankel function 

Sµ, ν Lommel’s function 

 

 

1.0 INTRODUCTION 

 

Our interest is to study transmission of energy in the 

generation and propagation of long waves due to 

underground upheaval in an ocean with variable slope. 

The approach is an analytical one where we have 

restricted ourselves in solving forced long linear shallow 

water equations, the solution of which, it seems, is not 

found till date in variable ocean floor. For a beach of 

variable slope rqxy −= , q > 0, r > 0, referred to 

horizontal and vertical directions as x-and y-axis 

respectively waves are generated by an instantaneous 

ground upheaval, along with a prescribed initial 

elevation and a velocity of the free surface at the instant 

before the ground begins to move. In conformity with 

Tuck and Hwang’s analysis of long wave generation due 

to arbitrary ground motion over a uniformly sloping 

beach (r = 1), we firstly show that it is possible to find a 

non-singular solution of the problem for all time t when 

the ocean slope varies. Then by taking a very general 

type of time–dependent bottom dislocation  we have 

been able to split the integrals in two parts one 

representing the waves due to free vibration which we 

claim to be the forerunners. It is shown that the forced 

waves (the second contributory part of the wave integral) 

will eventually catch up these forerunners and occupy 

the total wave spectrum beyond the half period of the 

forcing parameter. Assuming a time periodic ground 

motion, we next show that a steady-state exists. At this 

stage a noteworthy feature is observed of no transmission 

of energy from a finitely distributed time-periodic 

ground motion for a certain set of values of the 

disturbance function. This kind of paradoxical result was 

first observed by Stoker for steady-state surface waves in 

infinitely deep water (Stoker, J.J., 1957). Introduction of 
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small viscosity of the fluid may produce some amount of 

spreading of energy but that does not explain the huge 

non-transmission of energy which we found analytically 

over a large ocean area. Our attempt to find analytical 

solution of the problem helps us to understand the 

influence of variable bottom slope on wave elevation and 

velocity which might be helpful to understand the 

evolution of tsunami waves induced by near-shore 

earthquakes [Tinti and Tonini, 2005]. Following the 

comments of Weahausen and Laitone (Surface waves, 

1960), and Pelinovsky (2001) we assert that energy 

transmission explained here may also prove to be 

relevant in generation of long waves with variable 

pressure distributions. 

 

 
 

Fig. 1: Schematic diagram of the sea-bottom motion and 

symbolic definitions. 

 

 

2.0 PROBLEM AND ITS SOLUTION: 
 

We take the vertical upward direction as the y-axis, and the 

undisturbed horizontal surface of the sea as the xz -plane of 

which the axis Oz is along the shoreline. The sea is supposed to 

be bounded by a beach of variable slope given by the equation 

y = h0 (x) at equilibrium (Fig. 1). 

We assume a two-dimensional motion in which long waves 

are excited by a sudden bottom upheaval of height η0 (x, t) 

accompanied by an initial surface displacement η1(x) together 

with an initial vertical surface velocity η2 (x). If u(x, t) is the 

horizontal velocity, η(x, t) is the surface displacement and  

 

)t,x()x(h)t,x(hh 00 η−=≡
     (1)

 

is the depth at the point x, at time t > 0, the non-linear shallow 

water equations are  

 

{ } 0)h(u
x
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At t = 0-, we have 

 

)x(          ),x( 21 η=ηη=η &     on y = 0 (4) 

 

If η  and 0η are small compared to 0h  and u  is small 

compared with the local wave speed 0gh , equations (2) and 

(3), after using (1), may be linearized to 

 

t
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Eliminating u(x, t) from (5), (6), and using suffix notation for 

partial differentiation, we obtain the partial differential 

equation satisfied by η : 

 

tt0x0xx0tt )x(hg)x(gh η=η′−η−η    (7) 

 

When 0h and 0η  are given, it is required to determine η  as 

the solution of (7) subject to the initial condition (4). The 

horizontal velocity u is then found from (5); for this purpose, 

we may impose a physically reasonable boundary condition at 

x = 0, namely 

0
x

h~uh 00 →
∂
η∂

 as 0x →   (8) 

When 
r

0 qx(x)h = , q > 0, r > 0, equation (7) suggests that we 

consider the solution of the ordinary differential equation  

 

0)()(r)( 221rr =ζγβ+ζ′ζ+ζ′′ζ −
vvv    (9) 

 

for the determination of η . 

For 0≠γ , the general solution of this equation is [Erdélyi et. 

al. HTF, 1953] 

 

)(Yc)(Jc)( 21

γ
ν

αγ
ν

α βζζ+βζζ=ζv ,     (10) 

 

where νν Y and J denote respectively Bessel functions of first 

and second kind of order ν , and  

2

r1 −
=α , 

2

r
1 −=γ , 

r2

1r

−
−

±=ν       (11) 

For 0=γ , that is r = 2 the general solution of (9) is  

D
C

)( +
ζ

=ζv ,   (C, D) = constants.      (12) 

Equations (10) and (12) show that )( and )( ζ′ζ vv  cannot be 

both finite at 0=ζ  (in other words, η  and u cannot be both 

finite at x = 0 unless 

0c2 ≡ , and 0≠γ .    (13) 

To fix up the sign in ν  in (11), we consider the two 

cases: 

I. 0 < r < 2. 

Then 0>γ  and we have, as +→ζ 0 ,  

 r10 or  ~)(J~ −νγ+αγ
ν

α ζζ=ζβζζη  , 

 ror  2~~u −ζζ
ζ∂
η∂
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according as the sign is + or – in the expression for ν  in 

(11). Clearly η  and u are both finite at 0=ζ . If we take 

the + sign in the expression for ν  in (11), that is if  

  
r2

1r

−
−

=ν .   

This is also consistent with the condition (8). 

  II. r > 2 

Then 0<γ . As +→ζ 0  ∞→ζγ
. Then  

2~)(J γ−γ
ν ζβζ         

2 ~

γ
−α

ζη  = ∞→ζ
−

4

r

 as +→ζ 0 . 

Therefore the solution is not bounded at the origin 

when 0<γ , that is when r > 2. Consequently, we confine 

ourselves to the case 0 < r < 2 with the value of  ν  given 

by 
r2

1r

−
−

=ν  in the subsequent part of the article.  

To solve the equation (7) subject to the given initial and 

boundary conditions, we assume that  

ξξγξξ=η≡η γ−
ν

∞
−

∫ d)x(J x )t,(A)t,x( 1

0

2)r1(
     (14) 

Using this in (7), we obtain, by means of (9) and (10), with 

0c2 ≡ , the integral equation of first kind  

ξξγξσ+=η −
ν

∞
−

∫ d)x(J x  )AA()t,x( r1

0
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where  

 

2

1
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Then solution of η is obtained with the help of Hankel 

inversion theorem [Erdélyi et. al., Tables of Int. Trans., (1954)] 

as 

( )
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Where 

 

)t(H)t,x(t)t(H)t,x()t,x()t,x( 2101 η+η+η=ζ      (18) 

 

where H is the Heaviside unit function. 

We note that for r =1 this expression reduces to that of η 

found for constant slope beach. [Tuck and Hwang, 1972]. To 

evaluate the above integral we take 0)t,x()t,x( 21 =η=η and 

)t(T)x()t,x()t,x( 101 ζ=η=ζ  

 
where  

 

)t(H)e1()t(H)t(T ti −τ−+τ−= ω
 , τπ=ω / ,    (19) 

 

we have been able to evaluate the above integral for all time t. 

In the above the t-integral reduces to  
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with the help of a very nice result [Erdélyi et. al. HTF, 1953, 

pp.58] 
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Then we spilt the ξ-integral in two parts one from ξ = 0 to 

ξ0=ω/√(gq) [the first part], and can be evaluated by another 

result which combines product of two Hankel functions as an 

integral of a single [Erdélyi et. al., Tables of Int. Trans., 1954, 

Vol II, pp. 29] 
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This spilt corresponds to 11η , say, of η and corresponds to the 

free vibration and can be treated as the forerunners. These 

waves in this spectrum dominate for first few minutes, to be 

precise for the half period of the quake forcing. 
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On the other hand, the second part of ξ-integral from ξ=ξ0 to ∞ 

contribute η12, say, of η representing the forced wave part and 

they catch up the free waves beyond half period τ and dominate 

the wave spectrum gradually for t > τ. 

 

2.1 Discussion on the Nature of Waves with the Help 

of Some Illustrative Figures. 

Before we proceed further and discuss the steady-state 

nature of the waves and the energy transmission let us 

provide some illustrative figures showing the nature of 

η11 and η12 in an attempt to distinguish them foe small 

time 

10 20 30 40 50 60
t H< tL

-0.2

0.2

0.4

η

η12

η11

 
Fig. 2: Depicting η11 & η12 for small time when r = 0.7. 
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The above figure shows the prominence η11 over η12 for 

small time when the value of r = 0.7   

The next graph (Fig.2) illustrate nature of η for the 

same value of r = 0.7 and indicates that there might be 

some sort singularity at t = τ which needs further 

analytical investigation for the motion t > τ for a definite 

conclusion.  
 

10 20 30 40 50 60

t < t

1

2

3

4

h

 
Fig. 3 Depicting η for small time when r = 0.7. 

  

We will provide another illustration for another value 

of r just to show the equivalence of the results for 

different values of r and the prominence of η11 over η12 in 

small time: 

 

10 20 30 40 50 60
t H< tL

-0.1

0.1

0.2

0.3

η

η12

η11

 
Fig. 4: Depicting η11 and η12 for small time when r = 0.8. 

 

10 20 30 40 50 60

t < t

0.5

1

1.5

2

2.5

h

 
Fig, 5: Depicting η for small time when r = 0.8. 

 

In the above cases while depicting the results which 

well established analytically we have taken the half 

period of the quake forcing that is τ = 100 seconds and 

use have been made of the software Mathematica 5.1.  

An interesting feature of that comes out of these figure 

which we have already mentioned that η increasing 

indefinitely indicates as t increasing is probably due to 

the sudden disappearance of the bottom vibration at t = τ.  

In this article although we are interested to discuss the 

energy transmission at steady-state but it is perhaps not 

out of context to say few words about η12, at least 

qualitatively. The spilt of η namely η12 which comes 

from the second part of ξ-integral in (17) while 

integrating it from ξ=ξ0 to ∞ consists of three parts: one 

of which has a wave form and the other two are standing 

disturbances, analytical expressions of which is valid for 

2/3 < r < 4/3. We restraint ourselves of writing those 

complicated expressions rather give some illustration of 

η12   below for different sloppiness of ocean floor 

 

10 20 30 40 50

t < t

-0.02

0.02

0.04

0.06

0.08

0.1

h12

 
 

   Fig. 6. The graph of η12 when t < τ and for r = 0.7 

 

10 20 30 40 50

t < t

0.01

0.02

0.03

0.04

0.05

0.06

h12

 
 

Fig. 7: The graph of η12 when t < τ and for r = 0.8. 

 

The figures (7 ) - (8) indicate the dominance of η12 in the 

wave spectrum that is going to happen after some time, 

η12 actually corresponds to the forced wave part of η 

which will certainly govern the spectrum over those 

waves which are small and corresponds to the natural 

frequencies of wave motion. 

 

2.2 Periodic Ground Motion: Steady-State Solution 

Of ηηηη and u 

We assume 0)x(1 ≡η , 0)x(2 ≡η ; )tiexp()x(f)x(0 ω=η , 

t > 0 and show that a steady state ( ∞→t ) exists and 

also determine the corresponding values of ηand u. 
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2.3 Steady-State Values Of ηηηη 
 

When the integration with respect to s in (17) is 

completed, we get 
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We spilt the σ -range in (21) into the sub-intervals 

]2 ,0[ ω  and ) ,2[ ∞ω . By the help of known results on 

Fourier integrals, the part of the integral in (21) over the 

interval ]2 ,0[ ω  is asymptotically equal to  
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The remaining part of the integral in (21) is written as  
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Combining (24) and (25), we get for the integral in (21) 

the expression 
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Here the symbol ∫.)v.p( indicates the Cauchy 

Principal value of the integral in question. Following 

Bochner [ Wehausen, J.V. and Laitone, E.V. Surface 

waves. Handbuch der Physik IX (Springer, Berlin, 

1960)], the asymptotic values of the third and fourth 

terms of (26) are respectively 
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The results in (27) hold provided 
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Equation (21) then gives 

 

( ) ( ){ }
( ) ( ) ( )[ ]

( ) ∫
∞

γ−
ν

−−

γ
ν−

γ
ν

−

ξξγ×−ξ−ξξ×ωγω−

−γωπν−γω×

×ωω+πγπω=η

0

11222)r1(2

 ,1
)2(

2)r1(2
st

d )x(J)}p(f)(f{)p( )ti( expx gq  

gqxS  i2gqxH

)gq/(f t2 i expx gq2

for 35r0 <<     (28) 

 

( ) ( ) ( )
( )






ξξγ×−ξ−ξξ+

+γ+νν





−γ

πω
ωωγ=

∫
∞

γ−
+ν

−

γ−
+ν−

γ−
+ν

−−

0

1
1

1222

1
1 ,2

12
1

21211
st0

d)x(J)}p(f)(f{)p(i 

xpS)p(f)2(ip -                      

 xpH)p(fgq
2

)tiexp(xuh

for 35r0 <<     (29) 

Here νY  denotes Bessel function of the second kind, and 

µν  ,S  is Lommel’s function. 

The first term of both stη  and stu , as given below, 

represent progressive waves: 
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We also note that η* is an integral of the hyperbolic equation  
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The rest part of stη  as well as stu  represent clearly standing 

waves. Since γ > 0 in our case, we may use the asymptotic 

expansion of )z(H )2(

γ  for z ≥ 1 to obtain η* for large x: 
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The wave described by (33) propagates towards x → +∞ 

according to the equation 
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γ=

1
t gqx     (34) 
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Thus this wave moves with a variable acceleration unless r = 

1 when the acceleration is constant [ cp. Tuck & Hwang, 1972, 

pp - 449]. The height of the wave decreases with the time or 

distance from the source, according to the factor 
4r x −

 (which 

is equivalent to 
)r24(r

t
−−

). Since the depth increases as x, this 

corresponds to Green’s law of shallow water waves. 

 

 

2.4 Transmission of Energy 
A notable feature of the steady-state solution is that no energy 

is transmitted through the liquid for frequencies nω=ω which 

make ( ) 0gqf =ω , and hence η* = 0, u* = 0, the part stη − 

η* and stu − u* being a standing wave. These critical 

frequencies may form a countable infinite set as it is shown by 

the following example: 
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The zeros of )x(Jν , for 1−>ν  and x real, are known to be 

countably infinite. If n ,32γ be the n-th position zero of 

0)x(J 32 = , the critical frequencies nω  are given by 

( ) n ,32
2143

n gqa
4

3
γ=ω −
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3.0 CONCLUSIONS 

 

This study tries to reach out to the big anomaly between 

the tsunami heights with the so-called early predictions 

through the energy budget estimation although we know 

our solution is somewhat crippled as we have restricted 

ourselves to a linear model. Having said so, we wish to 

point out that for the study of tsunami wave motion 

certain important parameters like wave-evolution, the 

shoaling and wave run-up are well approximated by 

linear theory, and that too with high degree of precision 

(Edward Bryant, 2003, Synalokais, CE., 1991). Needless 

to mention that bathymetric obstacles in large ocean, 

creating variability of ocean floor starting from 

continental slope to shoreline plays an important role 

affecting tsunami translation and the energy transmission 

not only with teleseismic tsunami but even with tsunamis 

generated by near-shore earth-quake (Tinti & Tonini, 

2005). 

Leaving aside the actual physical dislocation of the sea 

floor the solution provided here is correct for all t. In fact 

if we apply the sea bed deformation due to earthquake as 

given by Okada’s solution [1992] we may perhaps need 

to employ some numerical work although in that case 

one has to remain cautious about oscillatory nature of the 

wave integrals under consideration. The main purpose of 

this work is to provide an analytical solution for the 

waves and discuss qualitatively about those waves for 

the case when instantaneous motion occurs at sea-bed 

with variable bathymetry and the energy transmission at 

the steady state. The place of this bottom dislocation is 

perfectly arbitrary and is not scaled from the shoreline. 

This situation is somewhat close to the real tsunami 

generation mechanism particularly when the non-

uniform nature of the slope of ocean comes into play. 

The effect of the non-uniform nature of the bottom slope 

is quite visible with the steady-state analysis of the far-

field waves. One of the central challenges in tsunami 

science is to rapidly access a local tsunami severity from 

the first rough earthquake estimations. In the current 

state of knowledge, false alarm is perhaps unavoidable 

(Dutykh et.al. 2012), but the study we proposed here 

may be taken as a first step to that direction as we have 

addressed the all important issue of energy transmission 

to tsunami waves though it is in the steady-state. 
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