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ABSTRACT 
 
A low speed wind tunnel test was conducted for a full-scaled 
generic model of Agusta-Bell 206B helicopter tail rotor blades in 
the Universiti Teknologi Malaysia-Low Speed Tunnel (UTM-
LST).  The purpose of this paper is to conduct the experimental 
research for gaining information on general aerodynamics and 
performance characteristics of tail rotor blades. The lift and drag 
coefficients are examined in order to explore aerodynamic 
characteristics of the tail rotor blades. The present results may be 
useful to understand general aerodynamic characteristics and will 
be used in validation of the Quasi-Continuous Method (QCM) in 
the future.  
 
 
KEY WORDS: Wind Tunnel Test; Helicopter Tail Rotor 
Blades; Quasi Continuous Method. 
 
 
NOMENCLATURE 
VLM Vortex Lattice Method 
MFM Mode Function Method 
QCM Quasi Continuous Method 
SSPM Simple Surface Panel Method 

CFD Computational Fluid Dynamic 
RPM Revolutions per Minute 
 
 
 
 
1.0 INTRODUCTION 
 
The propeller blade is the device that mainly used as propulsive 
for marine vehicles, airplanes and rotorcraft. As it is a crucial part, 
it has to be designed to meet power requirement at the indicated 
speed with optimum efficiency. Now days, with growing 
demands for of higher speed and greater power, the propeller is 
becoming increasingly larger in size and its geometry shape 
become more complicated. Due this complicated geometry, the 
propeller should be optimally designed for increased propulsion 
efficiency. 

To predict the steady and unsteady propeller characteristics, 
many numerical models and propeller theories were proposed. 
One of them and will be used in this study is based on lifting 
surface theory. The lifting surface theory also plays as important 
role in the hydrodynamic analysis of marine propellers. The 
theory has been developed for a long time in the field of 
aeronautics. While almost all of the applications of the theory are 
to wings of airplanes, there is an old application to screw 
propellers (Kondo, 1942). 

A number of methods based on lifting surface theory to 
estimate the propeller characteristics have been published. They 
can be classified into two groups. One group is based on the 
continuous loading method such as Mode Function Method 
(MFM) and the other the discrete loading method such as Vortex 
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2.3 Tests and Methods  
 
To measure the aerodynamic characteristics, lift, drag and 
pitching-moment, the tail rotor blade was supported by a bracket 
that attach to force balance sensor. Figure 4 shows the schematic 
diagram of the tail rotor blade configuration in this experiment 
that mounted on force balance sensor via bracket support. 

The type force balance sensor that's been used in this 
experiment is portable JR3 Force Balance, Figure 5.  The balance 
has a capability to measure the aerodynamic forces and moment 
in 3-dimensional. The aerodynamic loads can be tested at various 
wind direction by rotating the model via the turntable. The 
accuracy of the balance is within 0.04% based on 1 standard 
deviation. 

 
 

Figure 4: Schematic diagram of model-balance arrangement. 
 

 

 
Figure 5: JR3 external force balance. 

 
In this experiment, the wind tunnel speed was set from 5 

m/s to 40 m/s, corresponds to a Reynolds number based on airfoil 
chord from 0.419 × 105 to 3.352 × 105and angle of attack of 0, 5, 
10, 12, 15, 18,  20, and 25 degrees.  Since the blockage ratio is 
merely small, blockage corrections are assumed to be negligible. 

 
Table 1 shows the set up air speed data from the wind tunnel.  

 
Table 1: Wind tunnel air speed data 

Speed, V Reynolds Number 
(Re) × 10-5 

RPM Pressure, 
mbar 

5 0.419 54.0 14.7 
10 0.838 103.5 59.1 
15 1.257 152.5 133.2 
20 1.676 200.5 235.5 
25 2.095 249.0 368.8 
30 2.514 297.0 530.8 
35 2.933 345.0 721.8 
40 3.352 393.0 945.4 

. 
In order minimize the sidewall boundary-layer interference 

effects on the balance measurements, the blade model was placed 
distance from the floor. The gap of 60 mm was provided between 
lowest parts blade model and upper surface wind tunnel floor to 
minimize airflow and provide clearance for balance measurement, 
Figure 4 and Figure 5 shown the gap in the between of the blade 
bracket that has been mounted with a force balance sensor which 
position under the wind tunnel floor. 

The laminar-separation and turbulence-reattachment location 
were determined using the oil dot technique. The smoke test 
follows up after the oil dotted test already done. The objective 
this test is to visualize the flow pattern on the blade, before and 
after the stall angle happen to the blade. The typical result for this 
test is shown Figure 9.  
 

 
Figure 6: Gap between tail rotor blades with wind tunnel floor.  

 
3.0 AXIAL, NORMAL, LIFT, AND DRAG FORCE 
DIRECTIONS PROCEDURE 
 
The force coefficient FX and FY are parallel and perpendicular to 
the chord line of the blade, whereas the more usual coefficient FL 
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and FD are defined with reference to the direction of the free-
stream airflow. (E.L Houghton, 2013) 

 
Figure 7: Definition: axial, normal, lift, and drag force directions. 
 

The conversion from one pair of coefficient to the other may be 
carried out with reference to Figure 7 which is FR, the coefficient 
of the resultant aerodynamic force, act at an angle γ to FY. FR is 
the result both of FX and FY and of FL and FD: therefore, based on 
the Figure 7, it can defined that 
 
FL = FRcos (γ + α) = FRcos γ cos α – FR sin γ sin α       (1) 
 
But FRcos γ = FY and FR sin γ = FX, so 

The lift force is defined by: 

FL = FYcos α – FX sin α          (2) 

Similarly, the drag force also defined by: 

FD = FR sin (γ + α) = FY sin α + FXcos α        (3) 

And finally, the coefficients are given by the relationships 

Lift coefficient, ௅ܥ ൌ  ிಽ
భ
మఘ௏మௌ

 (4) 

Drag coefficient, ஽ܥ ൌ  ிವ
భ
మఘ௏మௌ

         (5) 

 
4.0 RESULT AND DISCUSSION  
 
The aerodynamic characteristics of the tail rotor blade were 
measured by using external balance system. As mentioned 
previously, the test wind speed was set from 5 m/s to 40m/s with 
increment 5 m/s for every test, and the blade setting angle of 
attack for this test is 0, 5, 10, 12, 15, 18, 20, and 25 degrees. 

To correctly subtract the interface drag, the additional test with 
only bracket without tail rotor blades with similar condition such 
as air speed and angle of attack was executed. 

Before starting the test, a tare reading was taken for every test 
with the wind off (where air speed is equal to 0 m/s) to get a 
measurement of the bias data.  

Repeatability tests had also be conducted to ensure getting 
precise reading and validate the quality of measured results. 
Figure 8 depicts the sample reading in a time series data for angle 

of attack 15 degrees and air speed set to 40 m/s from the external 
balance sensor.   
 

 
Figure 8: Time series data from external balance sensor. 

  

 

 
Figure 9: Smoke test and oil dot test. 
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