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ABSTRACT

The behavior of planing hull is very similar to piag flat plate.
So to treat the planing hull performance at moeefatoude
number, 2D planing flat plate was analyzed in défe Froude
number between 0.5 and 1. Finite volume, using ANSYFX
v14 software with RNG turbulence model was useditoulate
planing plate. The numerical results of the presslistribution,
free surface profile, lift and drag at different A®are presented
and discussed. Present calculations are compathd<iramer et
al [7] results and show almost good agreement.

KEY WORDS: 2D planing flat plate, RNG turbulence modé,
Lift, Drag, Pressure distribution.

NOMENCLATURE

G Pressure coefficient

D, Total drag

D, Pressure drag

Dy Wave drag

Ds Spray drag

Ds Frictional drag

f External force

g Gravitational acceleration
Li Initial immersed length
Ly Wetted length,  Critical Strain
Lt Total lift

Ls Spray lift

Lo Pressure lift

Lt Frictional lift

u Flow speed

U Velocity vector

\% Pressure vector

A Wave length

u dynamic viscosity

Ua Air dynamic viscosity
W water dynamic viscosity
Va Air kinematic viscosity
Vy Water kinematic viscosity
p Density

Pa Air density

Pw Water density

T AOA (AOA)

Ty Wall shear stress

1.0INTRODUCTION

Computational commercial software’s play an impatrteole in

industry and economic system because investigagmsreduce
huge costs by using them. It is true that in marimgéustry

experimental researches are particularly impoftantesearchers
can break costs and make more exact sample byationland

refuse using wrong model tests. Hydrodynamic patarseand

pressure distribution should be known to desigerdept planing

hull. But planing hull treat like flat plate so thrinvestigators
prefer to use planing flat plate instead of compteedels to do
their computational studies. 2-D planing flat platefaces are
used for example as seaplanes, planing craftacidffect ship
(SES) seals, thin foil without camber and water astploads

[1,2]. But in a number of these cases as SES g#altng surface
may operate at lower speeds where nonlinear effeces

important and must be considered.

There are some experimental, analytical and nuw@leresearch
in which the planing hull is considered as planifeg plate.

Brown worked on the planing lift characteristics rettangular
flat plate and presented equations which calculidtefor all
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deadrise angles [3]. Payne investigated very mucthe planing
flat plate and planing crafts, impact forces onsthdodies,
pressure distribution, etc. during 50 years frorB2000 [4, 5].
The influencing factors of drag reduction by ajeating to a flat-
plate carried out by Ou and Dong [6].

A flow past a two dimensional flat plate at low &de number
was studied by Kramer et al (2013) [7]. The effesftwviscosity
and free-surface nonlinearity were concluded tlatlinear and
viscous effects are important when the AOA is gneahan
approximately 10° and the low Froude number (mdarg.8). Figurel: Problem definition.

Durante et al presented a numerical model for thepaning

surfaces using linearized potential-flow theoryfiatte Froude

number in which the surface is replaced by a reprtegion of the 3.0 MODELING AND BOUNDARY CONDITIONS
pressure distribution along the plate using tridagyressure
finite elements [8]. A simple numerical approachsveanployed
to obtained data on hydrodynamic coefficients dod fpattern

for various ranges of input parameters. These datapartly

verified through the analysis of two limiting case$ the

considered problem: first, the infinite depth, Fdteunumber being
finite and second, finite depth with very high Fdeunnumbers [9].
The following sections are organized as followsct®a 2 is

described the problem definition. Section 3 is gitlee modeling ({
and boundary conditions and also computational donmiBhe ’
governing equations are described in section 4i®eb presents ‘ NG
the numerical results and discussions and finalyctusions are ety "
given in Section 6. o

\

~ Free suface
outlet

With attention to flat plat, computational domahosld be 4L at
upstream and 12L at downstream, where the L ig jpdsigth. The
upper side (air) is 4L and lower side (water) is 4k shown in

Fig. 2 This domain was meshed by 145000 quad elements as
shown inFig. 3.

atf | N water net

2.0PROBLEM DESCRIPTION

Bottom
In this study, two phase flow of air and water adwa flat plat / L
considering free surface was investigated. Schergatmetry of ) o i .
the planing flat plate is illustrated iRig. 1 The planing plate Figure.2: Domain dimensions and boundary conditions
length and thickness are 1m and 0.04m, respectiveijial
immersed length is;£0.5m. So the overall wetted length will be
roughly Lg=2L;=1m based on reference [7]. A fixed reference
coordinate system defined 2cm upper than leadirge.edhe
plate has an AOA7Z]. It is assumed that the flat plate has a
constant speed of) on the free surface and the fluid is
incompressible with a density and kinematic vistyosf p,, and
vy, respectively. The flow spedd and AOA varied, whereas the
other parameters were constant and pressure ditsbrb wave
breaking and viscose resistance calculated based-ronde
number at wet length of gL Different angles and speeds are
presented iTable 1

Table 1. The different angles and speeds usedsip#per. Figure.3: Cmputational mesh domain.

Froude 05 07 11 The size and type of elements play an importane riol
number achievingcorrect results. To ensure that the resalte not
dependent to number of elements,the problem weesiai
AOA (deg) Speed(m/s) different numbers of element at AOA of 10°. As showFig. 4,
75 ) 16 29 3.45 the lift and drag coefficients will be constant eaft125000
. - elements and also pressure will converge basédgrb with this
10 - - - 3.45 number of element. These two figure show that tesae mesh

12 ) ) ) 3.45 independent.

15 - - - 3.45
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Figure.4: Effect of cell number on lift coefficieAOA=10° and
Fr=1.1)
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Figure.5: Convergence of presure distribution @iepfor various
number of element, (AOA=10 deg, Fr=1.1)
4.0 GOVERNING EQUATION

To determine fluid treatment (velocity, pressure e surface
profile) all governing equations are given as fako

i Continuity equation:
V.V=0 (@))]

ii. Navier-Stokes equations:

v .
p(E+V.VV)=—VP+uV VS @)

Where 'V" and 'P" are velocity vector and pressure, respectively.

In addition, the factorf" denotes external forces.

iii. Wall shear stress equation:

au
T=po 3)

where x refer to longitudinal direction. In order obtain the
volume fraction field in time, the following transg equation is

solved
oa _
Fri V.(ua) =0 4)

ANSYS-CFX software uses the volume fraction methiod
simulate the free surface. Volume fraction of d iselts fraction
of water. In this method water and air are consaeone specific
fluid in which fluid density and viscosity changéthvparameter
“a’ in Egs. (5) and (6). Whea is 1 the whole cell is water and
when it isO the whole cell is air.

p(X,t) = a(X,t).py + (1 — a(X,0))p, (5)
Au(X' t) = a(Xr t)AuW + (1 - a(Xr t))ﬂa (6)

The subscripta andw denote air and water, respectively. In
addition, x, t andu are the spatial location vector, time variable
and dynamic viscosity, respectively.

5.NUMERICAL RESULTSAND DISCUTION

In order to validation the results, pressure cogdfit is compared
with Kramer et al results that reported in [7] ahstant AOA
T = 7.5° for various Froude numberkig. 6 shows quite good
agreement between simulation and Kramer’s resultahich C,
andA are:

P

Cp = 0.5p ULy, )
_2mu?
A= (8)

whereu is flow velocity in x-direction.

Hereafter, pressure distribution, free surfaceiferolist and drag
are presented. Fig. 7 shows the pressure diswitbati Fr=1.1 and
AOA=10, 12 and 15 degrees. Waves generated of¢eestirface
are shown in Figs. 8 and 9 at various AOA and Feoodmbers.
The height of wave and the length of wave, increase by
accretion in Froude number and AOA because of ¢feionship
between flow speed and length of wave accordirthecequation
(8).This cause in accretion of wave drag because\veaergy is
proportional to square of height according to egmai9) in
which h is wave height.

E:%p*g*;{*hz %)

Also, it should be mentioned that when the AOA risreased
more height of the wave generates at downstreatmediat plate.
Because the flow separates from the trailing edgheoplate and
causes more trough behind of the plate.

Fig. 10 illustrates contours of water velocity arduplate. It is
shown that velocity on the plate (near the waldéso because of
no-slip boundary condition. Besides that, due tpHi pressure is
maximum in this region because of the deceleratfigthe
velocity at leading edge of the flat plate. Liftdatirag coefficients
increase with Froude number and AOA. The majoriporof lift
and drag caused by pressure and viscose portioegkect in
comparison with pressure. This is a result of théet that rate of
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change of velocity%) is negligible, as shown in Fig. 10.

Results of the lift and drag at various Froude neimd@nd various
AOA are given in the Tables 3 and 4. The pressuag dnd
viscous drag components are also presented. Taislgi®en at
various Froude numbers but the AOA is constantde$. While
Table 4 is shown the results at Fr=1.1 but AOAQs 12 and 15
degrees. The same data are presented in Figs.dl23amata of
the Table 3 is demonstrated in Fig. 12 and Tabie related to
Fig. 13.
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Figure.6:Comparison of pressure distribution coefficientign
present calculation and Kramer et al. [7], AGA7.5°.
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Figure.7: Pressure distribution coefficient as acfion of plate
length to wave length ratio for different AOA.

Table 3 Components of lift and drag in different Froudentoer (AOA = 7.5°)

Fr Lift Pressurelift Drag Pressure Viscosedrag
(N) (N) (N) drag (N) (N)

0.5 21 21.1¢ 9.8 9.7¢ 0.0t

0.7 28 28.01 12.1 11.3¢ 0.04

1.1 35 36.01 15 14.97 0.03

Table.4: Components of lift and drag coefficientlififerent AOA (Fr=1.1.)
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g
Lift Pressurelift Drag Pressure Viscose Drag
AOA [deg.
[deg] N) N) ) Drag (N) )
10 63.98 64.04 16.66 16.32 0.34
12 72.02 72.07 20.24 20.04 0.2
15 97.67 97.72 30.2 29.9 0.3
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Figure.11: Plots of pressure contours for vario@AAFr=1.1)
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Figure.12: a) Lift coefficient as a function FrADA=7.5°.
b) Drag coefficient as a functions of Fr, AOA =%.5
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Figure.13: a) Lift coefficient as a function of AOA
b) Drag coefficient as a functions of AOA (Fr=1.1)

6.0 CONCOLUSION

Numerical computations were conducted in this sfiodylaning
flat-plate, and pressure distributions, lift an@girwave surface
were predicted. Mesh dependency is shown thatHerresent
method 140000 meshes are enough. Pressure digmbstwell
matched with Kramer et-al results. Free surfacefilpso are
determined at various Froude number and AOAs. Hiigissure
is predicted at leading edge of the plate and loesgure at
trailing edge. At high Froude number, it is cledrserved that
more free surface disturbances is shown at dovarstaf plate.
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