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ABSTRACT  
 
In this work, the thermodynamic equilibrium involved in the 
steam reforming of phenol to produce hydrogen has been 
examined. The mole fraction of the hydrogen depends on several 
process variables, such as system pressure, temperature, and ratio 
of reactants. The first step to understanding the effects of the 
aforementioned variables is a complete thermodynamic analysis. 
In this study, a thermodynamic equilibrium analysis has been 
performed for the steam reforming process of phenol over the 
following variable ranges: pressure 1atm, temperature 100–1200 
oC and phenol concentration in the feed ratio 2%–20%. The non-
stoichiometric formulation has been used. The equilibrium 
concentrations of different compounds were calculated by the 
method of direct minimization of the Gibbs free energy. The 
results show that the phenol conversion and the hydrogen mole 
fraction increased at lower phenol concentration in the feed. The 
best condition for coke production was at 10% phenol 
concentration which produced less coke.  
 
 
KEY WORDS: phenol steam reforming, hydrogen production, 

thermodynamic analysis. 
 
 

1.0 INTRODUCTION  
 
Due to the environmental concerns, production of hydrogen via 
the steam reforming of bio-oil components is considered as one of 
best ways for providing hydrogen future. The steam reforming of 
bio-oil is considered as an interesting route for hydrogen 
production with low CO2 emission [1]. Among the bio-oil one of 
the most promising is bio-oil, which production has grown 
sharply in recent years. In bio-oil, around 38% wt. [2] of the bio-
oil coverts to the phenolic compounds. The steam reforming of 
phenol can reduce COx which is the main greenhouse gases [3-5]. 
The reaction product of biomass pyrolysis typically contains a 
high molecular weight of hydrocarbon, phenolic compounds, 
acid, and water. Phenol was further recognized as the main 
component of tar formed following wood-biomass gasification by 
steam in a fluidized bed reactor in the low temperature range 
(600–700 oC) [5-7]. Phenol also can be obtained from industrial 
wastewater and is considered as toxic waste for many aquatic 
organisms. Due to its high solubility in water, it can directly 
convert to highly valuable gas hydrogen via steam reforming. The 
steam reforming of phenol, Reaction (1) and water gas shift 
reaction, Reaction (2), are two major side reactions that contribute 
to the deposition of carbon on the catalyst surface. These lead to 
deactivation of the catalysts and subsequently plugged the 
catalyst bed [8]: 
 
������ � 5��� ⟶ 6�� � 8��                                    (1) 
�� � ��� ⟶ ��� � ��		                                                (2) 
 
Significant research has been reported for hydrogen production 
by carbon dioxide reforming and partial oxidation [9]. The 
sustainable production of hydrogen can be accomplished by the 
conversion of biomass through steam reforming (SR), gasification 
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combined with pyrolysis, partial oxidation (POX), oxidative 
steam reforming (OSR), and autothermal reforming (ATR) from 
renewable carboxylates, such as glycerol, bio-ethanol, bio-oil and 
carbohydrates [10].  
 
In this study, the possibility of water-rich phase reforming of bio-
oil is discovered through thermodynamic analysis. A wide range 
of the previous researches discovered thermodynamic analysis of 
ethanol and methane as a form of renewable energy production 
[11-14], dimethyl ether [11, 15] and methanol [11]. These 
researches focus on converting carbonated compounds to 
hydrogen. However, little effort has been expended for practically 
understanding the efficient thermodynamic analysis of phenol. 
 
The aim of this work is thermodynamic analysis of steam 
reforming of oxygenated hydrocarbons of phenol for hydrogen 
production via thermodynamic design of Aspen V8.6 software. 
The resulting molar fractions are explored as a function of 
parametric variables such as pressure, phenol concentration and 
temperature. The production mole fractions for all of the variables 
were plotted. 

 
 

2.0 METHODOLOGY 
 
Aspen plus 8.6 software has been used for the analysis. The R-
Gibbs reactor (Figure 1) with Peng–Robinson property method 
has been chosen for the thermodynamic analysis. Phenol is the 
main component with the maximum composition of the mixture 
chosen to simulate the reforming of the phenol steam reforming. 
H2, CO, CO2, and C as well as the residual fuel and H2O were 
measured as the reforming based products on experimental result 
for Aspen Plus code requirement of product definition. The 
phenol concentration, reaction temperature and the pressure as a 
part of reactants condition must be stated. The input parameter set 
in the steam reforming is because the reactor temperature in the 
steam reforming for thermodynamic analysis is controlled by 
external heat transfer to the reactor and not the reactor itself [16]. 
The range of 100-1200 oC and 2-20% were varied for temperature 
and phenol concentration respectively and the result was shown 
by molar fractions of gas products. Coke formation was defined 
as solid carbon formation in the oxygenated feed. 
 

 
  
Figure 1 Schematic representation of the thermodynamic R-gibbs 
reactor 
 

 
3.0 RESULTS 

3.1 Effect of temperature on phenol conversion 
Temperature is the most important influencing factor in the steam 
reforming of hydrocarbons. Figure 2 shows the effect of 
temperature on phenol conversion in various concentration of 
phenol in water in the feed stream. The figure shows that the 
phenol conversion is increased by temperature in all 
concentration of phenol. This tendency of positive effect of 
temperature on phenol steam reforming reaction is consistent with 
results obtain for other experimental results too [7, 8, 17-21]. As 
the temperature increased from 100 °C to 700 °C, the phenol 
conversion increased from 5% to 100% for all phenol 
concentrations except for 18% and 20%. Based on this 
thermodynamic result, it indicated that the increase of phenol 
concentration had a negative effect on phenol steam reforming 
reaction and low concentration was favorable for the phenol 
steam reforming reaction. 
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Figure 2 Effect of temperature on phenol conversion in different 
concentration of phenol in water 
 
3.2 Effect of temperature on hydrogen molar fraction 
Effect of temperature on hydrogen production was investigated at 
2 to 20% concentration of phenol and 1 atm pressure at the 
temperature range of 100 to 1200 oC. Figure 3 shows the effect of 
phenol concentration and temperature on hydrogen production. In 
general, the molar fraction of hydrogen decreased with the 
increase of temperature at specified concentration. However, the 
molar fraction of hydrogen was higher at lower concentration. As 
the concentration increased from 2 wt.% to 20 wt.%, the molar 
fraction of hydrogen decreased gradually. It indicated that low 
temperature and low concentration were favourable for hydrogen 
production, which could enhance the steam-reforming and water-
gas shift reaction better. 
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Figure 3 Effect of temperature on hydrogen molar fraction in 
different concentration of phenol in water 
 
3.3  Effect of temperature on carbon monoxide molar fraction 
Figure 4 shows the effect of temperature on carbon monoxide 
(CO) production at 2 to 20% concentration of phenol and 1 atm 
pressure at the temperature range of 100 to 1200 oC. In general, 
the CO molar fraction decreased with increasing the temperature 
from 100 to 1200 oC. As it can be seen, the phenol concentration 
affects the CO molar fraction at the area of 200 to 550 oC only. 
However, the CO contents produced are initially low due to the 
water gas shift reaction.  
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Figure 4 Effect of temperature on carbon monoxide molar 
fraction in different concentration of phenol in water 
 
3.4  Effect of temperature on carbon dioxide molar fraction 
Effect of temperature on CO2 production during all concentration 
of phenol and temperature range is shown in Figure 5. As it can 

be seen, at low temperature ranges low amounts of CO2 is 
produced. The CO2 molar fraction is increased by increasing in 
temperature from 100 to 1200 oC due to the reverse water gas 
shift reactions. Unlike above mentioned results, the low 
concentration is not favorable to CO2 production. 
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Figure 5 Effect of temperature on carbon dioxide molar fraction 
in different concentration of phenol in water 
 
 
3.0 CONCLUSION 
 
In conclusion, the temperature and the phenol 
concentration are playing a very significant role in the 
activity of phenol steam reforming. It was found that the 
phenol steam reforming reaction is favourable with low 
concentration of phenol in water rather than high 
concentrations. At low concentration, higher phenol was 
converted to product, higher hydrogen and carbon 
monoxide and lower carbon dioxide were produced. 
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